I work with a Postgres database. This DB has a table with users, who have a birthdate (date field). Now I want to get all users who have their birthday in the upcoming week.
Here's a query that gets the right result, most of the time.
SELECT
(EXTRACT(MONTH FROM DATE '1980-08-05'),
EXTRACT(DAY FROM DATE '1980-08-05'))
IN (
SELECT EXTRACT(MONTH FROM CURRENT_DATE + s.a) AS m,
EXTRACT(DAY FROM CURRENT_DATE + s.a) AS d
FROM GENERATE_SERIES(0, 6) AS s(a)
);
(it doesn't take care of leap years correctly; but you could use extract
again to work the subselect in terms of a leap year instead of the current year.
EDIT: Got it working for all cases, and as a useful query rather than a scalar select. I'm using some extra subselects so that I don't have to type the same date or expression twice for month and day, and of course the actual data would be in a table instead of the values
expression. You might adapt this differently. It might still stand to improve by making a more intelligent series for weeks containing leap days, since sometimes that interval will only contain 6 days (for non-leap years).
I'll try to explain this from the inside-out; First thing I do is normalize the target date (CURRENT_DATE
usually, but explicit in this code) into a year that I know is a leap year, so that February 29th appears among dates. The next step is to generate a relation with all of the month-day pairs that are under consideration; Since there's no easy way to do an interval check in terms of month-day, it's all happening using generate_series
,
From there it's a simple matter of extracting the month and day from the target relation (the people
alias) and filtering just the rows that are in the subselect.
SELECT *
FROM
(select column1 as birthdate, column2 as name
from (values
(date '1982-08-05', 'Alice'),
(date '1976-02-29', 'Bob'),
(date '1980-06-10', 'Carol'),
(date '1992-06-13', 'David')
) as birthdays) as people
WHERE
((EXTRACT(MONTH FROM people.birthdate),
EXTRACT(DAY FROM people.birthdate)) IN (
SELECT EXTRACT(MONTH FROM thedate.theday + s.a) AS m,
EXTRACT(DAY FROM thedate.theday + s.a) AS d
FROM
(SELECT date (v.column1 -
(extract (YEAR FROM v.column1)-2000) * INTERVAL '1 year'
) as theday
FROM (VALUES (date '2011-06-09')) as v) as thedate,
GENERATE_SERIES(0, 6) AS s(a)
)
)
Operating on days, as I've done here, should work splendidly all the way up until a two month interval (if you wanted to look out that far), since december 31 + two months and change should include the leap day. On the other hand, it's almost certainly more useful to just work on whole months for such a query, in which case you don't really need anything more than extract(month from ...
.
I have simply created this year date from original birth date.
( DATE_PART('month', birth_date) || '/' || DATE_PART('day', birth_date) || '/' || DATE_PART('year', now()))::date between :start_date and :end_date
I hope this help.
This is based on Daniel Lyons's anniversary idea, by calculating the interval between the next birthday and today, with just +/- date arithmetic:
SELECT
today,
birthday,
CASE
WHEN this_year_anniversary >= today
THEN this_year_anniversary
ELSE this_year_anniversary + '1 year'::interval
END - today < '1 week'::interval AS is_upcoming
FROM
(
SELECT
today,
birthday,
birthday + years AS this_year_anniversary
FROM
(
SELECT
today,
birthday,
((
extract(year FROM today) - extract(year from birthday)
) || ' years')::interval AS years
FROM
(VALUES ('2011-02-28'::date)) AS t1 (today),
(VALUES
('1975-02-28'::date),
('1975-03-06'::date),
('1976-02-28'::date),
('1976-02-29'::date),
('1976-03-06'::date)
) AS t2 (birthday)
) AS t
) AS t;
Here's my take, which works with leap years too:
CREATE OR REPLACE FUNCTION days_until_birthday(
p_date date
) RETURNS integer AS $$
DECLARE
v_now date;
v_days integer;
v_date_upcoming date;
v_years integer;
BEGIN
v_now = now()::date;
IF (p_date IS NULL OR p_date > v_now) THEN
RETURN NULL;
END IF;
v_years = date_part('year', v_now) - date_part('year', p_date);
v_date_upcoming = p_date + v_years * interval '1 year';
IF (v_date_upcoming < v_now) THEN
v_date_upcoming = v_date_upcoming + interval '1 year';
END IF;
v_days = v_date_upcoming - v_now;
RETURN v_days;
END
$$ LANGUAGE plpgsql IMMUTABLE;
I know this post is old, but I had the same issue and came up with this simple and elegant solution: It is pretty easy with age() and accounts for lap years... for the people who had their birthdays in the last 20 days:
SELECT * FROM c
WHERE date_trunc('year', age(birthdate)) != date_trunc('year', age(birthdate + interval '20 days'))
First find out how old the person currently is using age()
, then grab the year from that extract(year from age())
. This is how old they are currently in years, so for their age at their next birthday add 1 to the year. Then their next birthday is found by adding an interval of this many years * interval '1 year'
to their birthday. Done.
I've used a subselect here to add the next_birth_day
column in to the complete table to make the select clause simpler. You can then play with the where conditions to suit your needs.
select *
from (
select *,
(extract(year from age(birth_date)) + 1) * interval '1 year' + birth_date "next_birth_day"
from public.users
) as users_with_upcoming_birth_days
where next_birth_day between now() and now() + '7 days'