I have a java code which works in one (main) thread. From the main thread, i spawn a new thread in which I make a server call. After the server call is done, I am doing some
When your only problem is waiting for the result, use ExecutorService for spawning your threads. It can accept work jobs both as Runnable and Callable. When you use the latter, then you are given a Future object in return, that can be used to wait for the result. You should consider using ExecutorService anyway, as from what I understand, you create many threads, and this is a perfect use case for executor services.
class AnyClass {
private ExecutorService threadPool = Executors.newFixedThreadPool(5);
public List<Future<Integer>> anyMethod() {
List<Future> futures = new ArrayList<>();
futures.add(threadPool.submit(() -> {
// Do your job here
return anyStatusCode;
}));
futures.add(threadPool.submit(() -> {
// Do your other job here
return anyStatusCode;
}));
return futures;
}
}
And the test class:
class TestAnyClass {
@Test
public void testAnyMethod() {
AnyClass anyObject = new AnyClass();
List<Future<Integer>> futures = anyObject.anyMethod();
CompletableFuture[] completable = futures.toArray(new CompletableFuture[futures.size()]);
// Wait for all
CompletableFuture.allOf(completable).join();
}
}
I suggest you use a mocking framework, to confirm that the server call was indeed made. As for the thread unit testing: Unit testing multithreaded applications
You may need to restructure your code so that it can be easily tested.
I can see several distinct areas for testing:
Structure your implementation so that Your Thread Management code is agnostic as to the details of the Worker. Then you can use Mock Workers to enable testing of Thread Management - for example a Mock Worker that fails in certain ways allows you to test certain paths in the management code.
Implement the Worker code so that it can be run in isolation. You can then unit test this independently, using mocks for the server.
For concurrency testing the links provided by Abhijeet Kashnia will help.
The resources provided by Abhijeet Kashnia may help, but I am not sure what you are trying to achieve.
You can do unit testing with mocks to verify your code, that won't test concurrency but will provide coverage. You can write an integration test to verify that the threads are being created and joined in the fashion you expect.However this will not guarantee against concurrency problems. Most concurrent problems are caused by timing bugs which are not predictable and thus can't be tested for accurately.
Here is my solution to test asynchrone method which used thread.start:
public class MyClass {
public void doSomthingAsynchrone() {
new Thread(() -> {
doSomthing();
}).start();
}
private void doSomthing() {
}
}
@RunWith(PowerMockRunner.class)
@PrepareForTest(MyClass.class)
public class MyClassTest {
ArgumentCaptor<Runnable> runnables = ArgumentCaptor.forClass(Runnable.class);
@InjectMocks
private MyClass myClass;
@Test
public void shouldDoSomthingAsynchrone() throws Exception {
// create a mock for Thread.class
Thread mock = Mockito.mock(Thread.class);
// mock the 'new Thread', return the mock and capture the given runnable
whenNew(Thread.class).withParameterTypes(Runnable.class)
.withArguments(runnables.capture()).thenReturn(mock);
myClass.doSomthingAsynchrone();
runnables.getValue().run();
/**
* instead of 'runnables.getValue().run();' you can use a real thread.start
*
* MockRepository.remove(Thread.class);
* Thread thread = new Thread(runnables.getValue());
* thread.start();
* thread.join();
**/
verify(myClass, times(1)).doSomthing();
}
}
This is what ConcurrentUnit was created for. The general usage is:
See the ConcurrentUnit page for more info.