I\'ve tried searching this and can\'t find a satisfactory answer.
I want to take a list/array of numbers and round them all to n significant figures. I have written
I got quite frustrated after scouring the internet and not finding an answer for this, so I wrote my own piece of code. Hope this is what you're looking for
import numpy as np
from numpy import ma
exp = np.floor(ma.log10(abs(X)).filled(0))
ans = np.round(X*10**-exp, sigfigs-1) * 10**exp
Just plug in your np array X and the required number of significant figures. Cheers!
Most of the solutions given here either (a) don't give correct significant figures, or (b) are unnecessarily complex.
If your goal is display formatting, then numpy.format_float_positional supports the desired behaviour directly. The following fragment returns the float x
formatted to 4 significant figures, with scientific notation suppressed.
import numpy as np
x=12345.6
np.format_float_positional(x, precision=4, unique=False, fractional=False, trim='k')
> 12340.
Testing all of the already proposed solutions, I find they either
Here's my attempt at a solution which should handle all of these things. (Edit 2020-03-18: added np.asarray
as suggested by A. West.)
def signif(x, p):
x = np.asarray(x)
x_positive = np.where(np.isfinite(x) & (x != 0), np.abs(x), 10**(p-1))
mags = 10 ** (p - 1 - np.floor(np.log10(x_positive)))
return np.round(x * mags) / mags
Testing:
def scottgigante(x, p):
x_positive = np.where(np.isfinite(x) & (x != 0), np.abs(x), 10**(p-1))
mags = 10 ** (p - 1 - np.floor(np.log10(x_positive)))
return np.round(x * mags) / mags
def awest(x,p):
return float(f'%.{p-1}e'%x)
def denizb(x,p):
return float(('%.' + str(p-1) + 'e') % x)
def autumn(x, p):
return np.format_float_positional(x, precision=p, unique=False, fractional=False, trim='k')
def greg(x, p):
return round(x, -int(np.floor(np.sign(x) * np.log10(abs(x)))) + p-1)
def user11336338(x, p):
xr = (np.floor(np.log10(np.abs(x)))).astype(int)
xr=10.**xr*np.around(x/10.**xr,p-1)
return xr
def dmon(x, p):
if np.all(np.isfinite(x)):
eset = np.seterr(all='ignore')
mags = 10.0**np.floor(np.log10(np.abs(x))) # omag's
x = np.around(x/mags,p-1)*mags # round(val/omag)*omag
np.seterr(**eset)
x = np.where(np.isnan(x), 0.0, x) # 0.0 -> nan -> 0.0
return x
def seanlake(x, p):
__logBase10of2 = 3.010299956639811952137388947244930267681898814621085413104274611e-1
xsgn = np.sign(x)
absx = xsgn * x
mantissa, binaryExponent = np.frexp( absx )
decimalExponent = __logBase10of2 * binaryExponent
omag = np.floor(decimalExponent)
mantissa *= 10.0**(decimalExponent - omag)
if mantissa < 1.0:
mantissa *= 10.0
omag -= 1.0
return xsgn * np.around( mantissa, decimals=p - 1 ) * 10.0**omag
solns = [scottgigante, awest, denizb, autumn, greg, user11336338, dmon, seanlake]
xs = [
1.114, # positive, round down
1.115, # positive, round up
-1.114, # negative
1.114e-30, # extremely small
1.114e30, # extremely large
0, # zero
float('inf'), # infinite
[1.114, 1.115e-30], # array input
]
p = 3
print('input:', xs)
for soln in solns:
print(f'{soln.__name__}', end=': ')
for x in xs:
try:
print(soln(x, p), end=', ')
except Exception as e:
print(type(e).__name__, end=', ')
print()
Results:
input: [1.114, 1.115, -1.114, 1.114e-30, 1.114e+30, 0, inf, [1.114, 1.115e-30]]
scottgigante: 1.11, 1.12, -1.11, 1.11e-30, 1.11e+30, 0.0, inf, [1.11e+00 1.12e-30],
awest: 1.11, 1.11, -1.11, 1.11e-30, 1.11e+30, 0.0, inf, TypeError,
denizb: 1.11, 1.11, -1.11, 1.11e-30, 1.11e+30, 0.0, inf, TypeError,
autumn: 1.11, 1.11, -1.11, 0.00000000000000000000000000000111, 1110000000000000000000000000000., 0.00, inf, TypeError,
greg: 1.11, 1.11, -1.114, 1.11e-30, 1.11e+30, ValueError, OverflowError, TypeError,
user11336338: 1.11, 1.12, -1.11, 1.1100000000000002e-30, 1.1100000000000001e+30, nan, nan, [1.11e+00 1.12e-30],
dmon: 1.11, 1.12, -1.11, 1.1100000000000002e-30, 1.1100000000000001e+30, 0.0, inf, [1.11e+00 1.12e-30],
seanlake: 1.11, 1.12, -1.11, 1.1100000000000002e-30, 1.1100000000000001e+30, 0.0, inf, ValueError,
Timing:
def test_soln(soln):
try:
soln(np.linspace(1, 100, 1000), 3)
except Exception:
[soln(x, 3) for x in np.linspace(1, 100, 1000)]
for soln in solns:
print(soln.__name__)
%timeit test_soln(soln)
Results:
scottgigante
135 µs ± 15.3 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
awest
2.23 ms ± 430 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
denizb
2.18 ms ± 352 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
autumn
2.92 ms ± 206 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
greg
14.1 ms ± 1.21 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
user11336338
157 µs ± 50.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
dmon
142 µs ± 8.52 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
seanlake
20.7 ms ± 994 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
There is a simple solution that uses the logic built into pythons string formatting system:
def round_sig(f, p):
return float(('%.' + str(p) + 'e') % f)
Test with the following example:
for f in [0.01, 0.1, 1, 10, 100, 1000, 1000]:
f *= 1.23456789
print('%e --> %f' % (f, round_sig(f,3)))
which yields:
1.234568e-02 --> 0.012350
1.234568e-01 --> 0.123500
1.234568e+00 --> 1.235000
1.234568e+01 --> 12.350000
1.234568e+02 --> 123.500000
1.234568e+03 --> 1235.000000
1.234568e+03 --> 1235.000000
Best of luck!
(If you like lambdas use:
round_sig = lambda f,p: float(('%.' + str(p) + 'e') % f)
)
For (display-) formatting in exponential notation, numpy.format_float_scientific(x, precision = n)
(where x is the number to be formatted) seems to work well. The method returns a string
. (This is similar to @Autumn's answer)
Here is an example:
>>> x = 7.92398e+05
>>> print(numpy.format_float_scientific(x, precision = 3))
7.924e+05
Here, the argument precision = n fixes the number of decimals in the mantissa (by rounding off). It is possible to re-convert back this to float
type...and that would obviously keep only the digits present in the string. It would be converted to a positional float format though... more work would be required - so I guess the re-conversion is probably quite a bad idea for large set of numbers.
Also, this doesn't work with iterables...look the docs up for more info.
One more solution which works well. Doing the test from @ScottGigante, it would be second best with a timing of 1.75ms.
import math
def sig_dig(x, n_sig_dig = 5):
num_of_digits = len(str(x).replace(".", ""))
if n_sig_dig >= num_of_digits:
return x
n = math.floor(math.log10(abs(x)) + 1 - n_sig_dig)
result = round(x * 10**(-n)) * 10**n
return result
And if it should be applied also to list/arrays you can vectorize it as
sig_dig_vec = np.vectorize(sig_dig)
Credit: answer inspired by this post