So I have this class:
public class Foo where T : ???
{
private T item;
public bool IsNull()
{
return item == null;
}
}
I ran into this issue for a simpler case of wanting a generic static method that could take anything "nullable" (either reference types or Nullables), which brought me to this question with no satisfactory solution. So I came up with my own solution which was relatively easier to solve than the OP's stated question by simply having two overloaded methods, one that takes a T
and has the constraint where T : class
and another that takes a T?
and has where T : struct
.
I then realized, that solution can also be applied to this problem to create a solution that is checkable at compile time by making the constructor private (or protected) and using a static factory method:
//this class is to avoid having to supply generic type arguments
//to the static factory call (see CA1000)
public static class Foo
{
public static Foo<TFoo> Create<TFoo>(TFoo value)
where TFoo : class
{
return Foo<TFoo>.Create(value);
}
public static Foo<TFoo?> Create<TFoo>(TFoo? value)
where TFoo : struct
{
return Foo<TFoo?>.Create(value);
}
}
public class Foo<T>
{
private T item;
private Foo(T value)
{
item = value;
}
public bool IsNull()
{
return item == null;
}
internal static Foo<TFoo> Create<TFoo>(TFoo value)
where TFoo : class
{
return new Foo<TFoo>(value);
}
internal static Foo<TFoo?> Create<TFoo>(TFoo? value)
where TFoo : struct
{
return new Foo<TFoo?>(value);
}
}
Now we can use it like this:
var foo1 = new Foo<int>(1); //does not compile
var foo2 = Foo.Create(2); //does not compile
var foo3 = Foo.Create(""); //compiles
var foo4 = Foo.Create(new object()); //compiles
var foo5 = Foo.Create((int?)5); //compiles
If you want a parameterless constructor, you won't get the nicety of overloading, but you can still do something like this:
public static class Foo
{
public static Foo<TFoo> Create<TFoo>()
where TFoo : class
{
return Foo<TFoo>.Create<TFoo>();
}
public static Foo<TFoo?> CreateNullable<TFoo>()
where TFoo : struct
{
return Foo<TFoo?>.CreateNullable<TFoo>();
}
}
public class Foo<T>
{
private T item;
private Foo()
{
}
public bool IsNull()
{
return item == null;
}
internal static Foo<TFoo> Create<TFoo>()
where TFoo : class
{
return new Foo<TFoo>();
}
internal static Foo<TFoo?> CreateNullable<TFoo>()
where TFoo : struct
{
return new Foo<TFoo?>();
}
}
And use it like this:
var foo1 = new Foo<int>(); //does not compile
var foo2 = Foo.Create<int>(); //does not compile
var foo3 = Foo.Create<string>(); //compiles
var foo4 = Foo.Create<object>(); //compiles
var foo5 = Foo.CreateNullable<int>(); //compiles
There are few disadvantages to this solution, one is that you may prefer using 'new' to construct objects. Another is that you won't be able to use Foo<T>
as a generic type argument for a type constraint of something like: where TFoo: new()
. Finally is the bit of extra code you need here which would increase especially if you need multiple overloaded constructors.
As mentioned, you cannot have a compile-time check for it. Generic constraints in .NET are severely lacking, and do not support most scenarios.
However I consider this to be a better solution for run-time checking. It can be optimized at JIT compilation time, since they're both constants.
public class SomeClass<T>
{
public SomeClass()
{
// JIT-compile time check, so it doesn't even have to evaluate.
if (default(T) != null)
throw new InvalidOperationException("SomeClass<T> requires T to be a nullable type.");
T variable;
// This still won't compile
// variable = null;
// but because you know it's a nullable type, this works just fine
variable = default(T);
}
}
public class Foo<T>
{
private T item;
public Foo(T item)
{
this.item = item;
}
public bool IsNull()
{
return object.Equals(item, null);
}
}
var fooStruct = new Foo<int?>(3);
var b = fooStruct.IsNull();
var fooStruct1 = new Foo<int>(3);
b = fooStruct1.IsNull();
var fooStruct2 = new Foo<int?>(null);
b = fooStruct2.IsNull();
var fooStruct3 = new Foo<string>("qqq");
b = fooStruct3.IsNull();
var fooStruct4 = new Foo<string>(null);
b = fooStruct4.IsNull();
I use
public class Foo<T> where T: struct
{
private T? item;
}
If you only want to allow nullable value types and reference types, and disallow non-nullable value types, then I think you're out of luck as of C# 9.
I am writing a pipes and filters application, and want to use a null reference as the last item that passes into the pipeline, so that every filter can shut down nicely, do cleanup, etc...
In other words, you need to reserve a special value that indicates the end-of-stream.
Consider creating a wrapper type that provides this. It'd be similar to how Nullable<T>
is implemented, and has the additional benefit of allowing a non-end-of-stream null
value to be transmitted, should that be useful.
public readonly struct StreamValue<T>
{
public bool IsEndOfStream { get; }
public T Value { get; }
}
If you are willing to make a runtime check in Foo's constructor rather than having a compile-time check, you can check if the type is not a reference or nullable type, and throw an exception if that's the case.
I realise that only having a runtime check may be unacceptable, but just in case:
public class Foo<T>
{
private T item;
public Foo()
{
var type = typeof(T);
if (Nullable.GetUnderlyingType(type) != null)
return;
if (type.IsClass)
return;
throw new InvalidOperationException("Type is not nullable or reference type.");
}
public bool IsNull()
{
return item == null;
}
}
Then the following code compiles, but the last one (foo3
) throws an exception in the constructor:
var foo1 = new Foo<int?>();
Console.WriteLine(foo1.IsNull());
var foo2 = new Foo<string>();
Console.WriteLine(foo2.IsNull());
var foo3= new Foo<int>(); // THROWS
Console.WriteLine(foo3.IsNull());