I have an image.
I want to obtain a 3x3 window (neighbouring pixels) for every pixel in the image.
I have this Python code:
for x in range(2,
I think the following does what you are after. The loop is only over the 9 elements. I'm sure there is a way of vectorizing it, but it's probably not worth the effort.
import numpy
im = numpy.random.randint(0,50,(5,7))
# idx_2d contains the indices of each position in the array
idx_2d = numpy.mgrid[0:im.shape[0],0:im.shape[1]]
# We break that into 2 sub arrays
x_idx = idx_2d[1]
y_idx = idx_2d[0]
# The mask is used to ignore the edge values (or indeed any values).
mask = numpy.ones(im.shape, dtype='bool')
mask[0, :] = False
mask[:, 0] = False
mask[im.shape[0] - 1, :] = False
mask[:, im.shape[1] - 1] = False
# We create and fill an array that contains the lookup for every
# possible 3x3 array.
idx_array = numpy.zeros((im[mask].size, 3, 3), dtype='int64')
# Compute the flattened indices for each position in the 3x3 grid
for n in range(0, 3):
for m in range(0, 3):
# Compute the flattened indices for each position in the
# 3x3 grid
idx = (x_idx + (n-1)) + (y_idx + (m-1)) * im.shape[1]
# mask it, and write it to the big array
idx_array[:, m, n] = idx[mask]
# sub_images contains every valid 3x3 sub image
sub_images = im.ravel()[idx_array]
# Finally, we can flatten and sort each sub array quickly
sorted_sub_images = numpy.sort(sub_images.reshape((idx[mask].size, 9)))
This can be done faster, by reshaping and swapping axes, and then repeating over all kernel elements, like this:
im = np.arange(81).reshape(9,9)
print np.swapaxes(im.reshape(3,3,3,-1),1,2)
This gives you an array of 3*3 tiles which tessalates across the surface:
[[[[ 0 1 2] [[ 3 4 5] [[ 6 7 8]
[ 9 10 11] [12 13 14] [15 16 17]
[18 19 20]] [21 22 23]] [24 25 26]]]
[[[27 28 29] [[30 31 32] [[33 34 35]
[36 37 38] [39 40 41] [42 43 44]
[45 46 47]] [48 49 50]] [51 52 53]]]
[[[54 55 56] [[57 58 59] [[60 61 62]
[63 64 65] [66 67 68] [69 70 71]
[72 73 74]] [75 76 77]] [78 79 80]]]]
To get the overlapping tiles we need to repeat this 8 further times, but 'wrapping' the array, by using a combination of vstack
and column_stack
. Note that the right and bottom tile arrays wrap around (which may or may not be what you want, depending on how you are treating edge conditions):
im = np.vstack((im[1:],im[0]))
im = np.column_stack((im[:,1:],im[:,0]))
print np.swapaxes(im.reshape(3,3,3,-1),1,2)
#Output:
[[[[10 11 12] [[13 14 15] [[16 17 9]
[19 20 21] [22 23 24] [25 26 18]
[28 29 30]] [31 32 33]] [34 35 27]]]
[[[37 38 39] [[40 41 42] [[43 44 36]
[46 47 48] [49 50 51] [52 53 45]
[55 56 57]] [58 59 60]] [61 62 54]]]
[[[64 65 66] [[67 68 69] [[70 71 63]
[73 74 75] [76 77 78] [79 80 72]
[ 1 2 3]] [ 4 5 6]] [ 7 8 0]]]]
Doing it this way you wind up with 9 sets of arrays, so you then need to zip them back together. This, and all the reshaping generalises to this (for arrays where the dimensions are divisible by 3):
def new(im):
rows,cols = im.shape
final = np.zeros((rows, cols, 3, 3))
for x in (0,1,2):
for y in (0,1,2):
im1 = np.vstack((im[x:],im[:x]))
im1 = np.column_stack((im1[:,y:],im1[:,:y]))
final[x::3,y::3] = np.swapaxes(im1.reshape(rows/3,3,cols/3,-1),1,2)
return final
Comparing this new
function to looping through all the slices (below), using timeit
, its about 4 times faster, for a 300*300 array.
def old(im):
rows,cols = im.shape
s = []
for x in xrange(1,rows):
for y in xrange(1,cols):
s.append(im[x-1:x+2,y-1:y+2])
return s
Try the following code as matlab function im2col(...)
import numpy as np
def im2col(Im, block, style='sliding'):
"""block = (patchsize, patchsize)
first do sliding
"""
bx, by = block
Imx, Imy = Im.shape
Imcol = []
for j in range(0, Imy):
for i in range(0, Imx):
if (i+bx <= Imx) and (j+by <= Imy):
Imcol.append(Im[i:i+bx, j:j+by].T.reshape(bx*by))
else:
break
return np.asarray(Imcol).T
if __name__ == '__main__':
Im = np.reshape(range(6*6), (6,6))
patchsize = 3
print Im
out = im2col(Im, (patchsize, patchsize))
print out
print out.shape
print len(out)