Efficient and precise calculation of the euclidean distance

前端 未结 5 546
独厮守ぢ
独厮守ぢ 2020-12-09 11:50

Following some online research (1, 2, numpy, scipy, scikit, math), I have found several ways for calculating the Euclidean Distance in Python:



        
相关标签:
5条回答
  • 2020-12-09 12:18

    Conclusion first:

    From the test result by using timeit for efficiency test, we can conclude that regarding the efficiency:

    Method5 (zip, math.sqrt) > Method1 (numpy.linalg.norm) > Method2 (scipy.spatial.distance) > Method3 (sklearn.metrics.pairwise.euclidean_distances )

    While I didn't really test your Method4 as it is not suitable for general cases and it is generally equivalent to Method5.

    For the rest, quite surprisingly, Method5 is the fastest one. While for Method1 which uses numpy, as what we expected, which is heavily optimized in C, is the second fastest.

    For scipy.spatial.distance, if you go directly to the function definition, you will see that it is actually using numpy.linalg.norm, except it will perform the validation on the two input vectors before the actual numpy.linalg.norm. That's why it is slightly slower thant numpy.linalg.norm.

    Finally for sklearn, according to the documentation:

    This formulation has two advantages over other ways of computing distances. First, it is computationally efficient when dealing with sparse data. Second, if one argument varies but the other remains unchanged, then dot(x, x) and/or dot(y, y) can be pre-computed. However, this is not the most precise way of doing this computation, and the distance matrix returned by this function may not be exactly symmetric as required

    Since in your question you would like to use a fixed set of data, the advantage of this implementation is not reflected. And due to the trade off between the performance and precision, it also gives the worst precision among all of the methods.

    Regarding the precision, Method5=Metho1=Method2>Method3

    Efficiency Test Script:

    import numpy as np
    from scipy.spatial import distance
    from sklearn.metrics.pairwise import euclidean_distances
    import math
    
    # 1
    def eudis1(v1, v2):
        return np.linalg.norm(v1-v2)
    
    # 2
    def eudis2(v1, v2):
        return distance.euclidean(v1, v2)
    
    # 3
    def eudis3(v1, v2):
        return euclidean_distances(v1, v2)
    
    # 5
    def eudis5(v1, v2):
        dist = [(a - b)**2 for a, b in zip(v1, v2)]
        dist = math.sqrt(sum(dist))
        return dist
    
    dis1 = (52, 106, 35, 12)
    dis2 = (33, 153, 75, 10)
    v1, v2 = np.array(dis1), np.array(dis2)
    
    import timeit
    
    def wrapper(func, *args, **kwargs):
        def wrapped():
            return func(*args, **kwargs)
        return wrapped
    
    wrappered1 = wrapper(eudis1, v1, v2)
    wrappered2 = wrapper(eudis2, v1, v2)
    wrappered3 = wrapper(eudis3, v1, v2)
    wrappered5 = wrapper(eudis5, v1, v2)
    t1 = timeit.repeat(wrappered1, repeat=3, number=100000)
    t2 = timeit.repeat(wrappered2, repeat=3, number=100000)
    t3 = timeit.repeat(wrappered3, repeat=3, number=100000)
    t5 = timeit.repeat(wrappered5, repeat=3, number=100000)
    
    print('\n')
    print('t1: ', sum(t1)/len(t1))
    print('t2: ', sum(t2)/len(t2))
    print('t3: ', sum(t3)/len(t3))
    print('t5: ', sum(t5)/len(t5))
    

    Efficiency Test Output:

    t1:  0.654838958307
    t2:  1.53977598714
    t3:  6.7898791732
    t5:  0.422228400305
    

    Precision Test Script & Result:

    In [8]: eudis1(v1,v2)
    Out[8]: 64.60650122085238
    
    In [9]: eudis2(v1,v2)
    Out[9]: 64.60650122085238
    
    In [10]: eudis3(v1,v2)
    Out[10]: array([[ 64.60650122]])
    
    In [11]: eudis5(v1,v2)
    Out[11]: 64.60650122085238
    
    0 讨论(0)
  • 2020-12-09 12:21

    As a general rule of thumb, stick to the scipy and numpy implementations where possible, as they're vectorized and much faster than native Python code. (Main reasons are: implementations in C, vectorization eliminates type checking overhead that looping does.)

    (Aside: My answer doesn't cover precision here, but I think the same principle applies for precision as for efficiency.)

    As a bit of a bonus, I'll chip in with a bit of information on how you can profile your code, to measure efficiency. If you're using the IPython interpreter, the secret is to use the %prun line magic.

    In [1]: import numpy
    
    In [2]: from scipy.spatial import distance
    
    In [3]: c1 = numpy.array((52, 106, 35, 12))
    
    In [4]: c2 = numpy.array((33, 153, 75, 10))
    
    In [5]: %prun distance.euclidean(c1, c2)
             35 function calls in 0.000 seconds
    
       Ordered by: internal time
    
       ncalls  tottime  percall  cumtime  percall filename:lineno(function)
            1    0.000    0.000    0.000    0.000 {built-in method builtins.exec}
            1    0.000    0.000    0.000    0.000 linalg.py:1976(norm)
            1    0.000    0.000    0.000    0.000 {built-in method numpy.core.multiarray.dot}
            6    0.000    0.000    0.000    0.000 {built-in method numpy.core.multiarray.array}
            4    0.000    0.000    0.000    0.000 numeric.py:406(asarray)
            1    0.000    0.000    0.000    0.000 distance.py:232(euclidean)
            2    0.000    0.000    0.000    0.000 distance.py:152(_validate_vector)
            2    0.000    0.000    0.000    0.000 shape_base.py:9(atleast_1d)
            1    0.000    0.000    0.000    0.000 misc.py:11(norm)
            1    0.000    0.000    0.000    0.000 function_base.py:605(asarray_chkfinite)
            2    0.000    0.000    0.000    0.000 numeric.py:476(asanyarray)
            1    0.000    0.000    0.000    0.000 {method 'ravel' of 'numpy.ndarray' objects}
            1    0.000    0.000    0.000    0.000 linalg.py:111(isComplexType)
            1    0.000    0.000    0.000    0.000 <string>:1(<module>)
            2    0.000    0.000    0.000    0.000 {method 'append' of 'list' objects}
            1    0.000    0.000    0.000    0.000 {built-in method builtins.issubclass}
            4    0.000    0.000    0.000    0.000 {built-in method builtins.len}
            1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
            2    0.000    0.000    0.000    0.000 {method 'squeeze' of 'numpy.ndarray' objects}
    
    
    In [6]: %prun numpy.linalg.norm(c1 - c2)
             10 function calls in 0.000 seconds
    
       Ordered by: internal time
    
       ncalls  tottime  percall  cumtime  percall filename:lineno(function)
            1    0.000    0.000    0.000    0.000 {built-in method builtins.exec}
            1    0.000    0.000    0.000    0.000 linalg.py:1976(norm)
            1    0.000    0.000    0.000    0.000 {built-in method numpy.core.multiarray.dot}
            1    0.000    0.000    0.000    0.000 <string>:1(<module>)
            1    0.000    0.000    0.000    0.000 numeric.py:406(asarray)
            1    0.000    0.000    0.000    0.000 {method 'ravel' of 'numpy.ndarray' objects}
            1    0.000    0.000    0.000    0.000 linalg.py:111(isComplexType)
            1    0.000    0.000    0.000    0.000 {built-in method builtins.issubclass}
            1    0.000    0.000    0.000    0.000 {built-in method numpy.core.multiarray.array}
            1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
    

    What %prun does is tell you how long a function call takes to run, including a bit of trace to figure out where the bottleneck might be. In this case, both the scipy.spatial.distance.euclidean and numpy.linalg.norm implementations are pretty fast. Assuming you defined a function dist(vect1, vect2), you can profile using the same IPython magic call. As another added bonus, %prun also works inside the Jupyter notebook, and you can do %%prun to profile an entire cell of code, rather than just one function, simply by making %%prun the first line of that cell.

    0 讨论(0)
  • 2020-12-09 12:32

    I don't know how the precision and speed compares to the other libraries you mentioned, but you can do it for 2D vectors using the built-in math.hypot() function:

    from math import hypot
    
    def pairwise(iterable):
        "s -> (s0, s1), (s1, s2), (s2, s3), ..."
        a, b = iter(iterable), iter(iterable)
        next(b, None)
        return zip(a, b)
    
    a = (52, 106, 35, 12)
    b = (33, 153, 75, 10)
    
    dist = [hypot(p2[0]-p1[0], p2[1]-p1[1]) for p1, p2 in pairwise(tuple(zip(a, b)))]
    print(dist)  # -> [131.59027319676787, 105.47511554864494, 68.94925670375281]
    
    0 讨论(0)
  • 2020-12-09 12:34

    This is not exactly answering the question, but it is probably worth mentioning that if you aren't interested in the actual euclidean distance, but just want to compare euclidean distances against each other, square roots are monotone functions, i.e. x**(1/2) < y**(1/2) if and only if x < y.

    So if you don't want the explicit distance, but for instance just want to know if the euclidean distance of vector1 is closer to a list of vectors, called vectorlist, you can avoid the expensive (in terms of both precision and time) square root, but can make do with something like

    min(vectorlist, key = lambda compare: sum([(a - b)**2 for a, b in zip(vector1, compare)])

    0 讨论(0)
  • 2020-12-09 12:38

    Here is an example on how to use just numpy.

    import numpy as np
    
    a = np.array([3, 0])
    b = np.array([0, 4])
    
    c = np.sqrt(np.sum(((a - b) ** 2)))
    # c == 5.0
    
    0 讨论(0)
提交回复
热议问题