In Python you can get the intersection of two sets doing:
>>> s1 = {1, 2, 3, 4, 5, 6, 7, 8, 9}
>>> s2 = {0, 3, 5, 6, 10}
>>> s1 &a
Set intersection of two sets of sizes m,n
can be achieved with O(max{m,n} * log(min{m,n}))
in the following way:
Assume m << n
1. Represent the two sets as list/array(something sortable)
2. Sort the **smaller** list/array (cost: m*logm)
3. Do until all elements in the bigger list has been checked:
3.1 Sort the next **m** items on the bigger list(cost: m*logm)
3.2 With a single pass compare the smaller list and the m items you just sorted and take the ones that appear in both of them(cost: m)
4. Return the new set
The loop in step 3 will run for n/m
iterations and each iteration will take O(m*logm)
, so you will have time complexity of O(nlogm)
for m << n.
I think that's the best lower bound that exists
The intersection algorithm always runs at O(min(len(s1), len(s2))).
In pure Python, it looks like this:
def intersection(self, other):
if len(self) <= len(other):
little, big = self, other
else:
little, big = other, self
result = set()
for elem in little:
if elem in big:
result.add(elem)
return result
[Answer to the question in the additional edit] The data structure behind sets is a hash table.
The answer appears to be a search engine query away. You can also use this direct link to the Time Complexity page at python.org. Quick summary:
Average: O(min(len(s), len(t))
Worst case: O(len(s) * len(t))
EDIT: As Raymond points out below, the "worst case" scenario isn't likely to occur. I included it originally to be thorough, and I'm leaving it to provide context for the discussion below, but I think Raymond's right.