I am working with pandas, but I don\'t have so much experience. I have the following DataFrame:
A
0 NaN
1 0.00
2 0.00
3 3.33
4
you might have to do it the hard way
B = []
i =0
m_lim = 11
while i<len(A):
if i<m_lim:
B.append(sum(A[0:i]))
if i>=m_lim and i < len(A) -m_lim:
B.append(sum(A[i-m_lim:i]))
if i>= len(A) -m_lim:
B.append(sum(A[i:]))
i=i+1
df['B'] = B
Check the pandas.Series.expanding. The series.expanding(min_periods=2).sum()
will do the job for you. And don't forget to set 0-th element, since it is NaN
. I mean,
accumulation = series.expanding(min_periods=2).sum()
accumulation[0] = series[0] # or as you like
Call rolling with min_periods=1
and window=11
and sum:
In [142]:
df['A'].rolling(min_periods=1, window=11).sum()
Out[142]:
0 NaN
1 0.00
2 0.00
3 3.33
4 13.54
5 20.21
6 27.21
7 35.48
8 41.55
9 43.72
10 47.10
11 49.58
12 51.66
13 58.61
14 55.28
15 46.82
16 46.81
17 49.50
18 47.96
19 48.09
20 48.93
21 45.87
22 43.91
Name: A, dtype: float64