Plot circle with a certain radius around point on a map in ggplot2

后端 未结 5 420
情话喂你
情话喂你 2020-12-09 04:37

I have a map with the 8 points plotted on it:

library(ggplot2)
library(ggmap)
data = data.frame(
    ID = as.numeric(c(1:8)),
    longitude = as.numeric(c(-6         


        
相关标签:
5条回答
  • 2020-12-09 05:11

    Well, as the referred posting already suggests - switch to a projection that is based in meters, and then back:

    library(rgeos)
    library(sp)
    d <- SpatialPointsDataFrame(coords = data[, -1], 
                                data = data, 
                                proj4string = CRS("+init=epsg:4326"))
    d_mrc <- spTransform(d, CRS("+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs"))
    

    Now, the width can be specified in meters:

    d_mrc_bff_mrc <- gBuffer(d_mrc, byid = TRUE, width = 450)
    

    Transform it back and add it to the plot using geom_path:

    d_mrc_bff <- spTransform(d_mrc_bff_mrc, CRS("+init=epsg:4326"))
    d_mrc_bff_fort <- fortify(d_mrc_bff)
    islandMap + 
      RL + 
      geom_path(data=d_mrc_bff_fort, aes(long, lat, group=group), color="red") + 
      scale_x_continuous(limits = c(-63.280, -63.21), expand = c(0, 0)) + 
      scale_y_continuous(limits = c(17.605, 17.66), expand = c(0, 0)) 
    

    0 讨论(0)
  • 2020-12-09 05:11

    Calculating distance in km given latitude and longitude isn't super straightforward; 1 degree lat/long is a greater distance at the equator than at the poles, for example. If you want an easy workaround that you can eyeball for accuracy, you might try:

    islandMap + RL + 
      scale_x_continuous(limits = c(-63.280, -63.21), expand = c(0, 0)) + 
      scale_y_continuous(limits = c(17.605, 17.66), expand = c(0, 0)) + 
      geom_point(aes(x = longitude, y = latitude), data = data, size = 20, shape = 1,  color = "#ff0000")
    

    You'll need to adjust the size paramter in the 2nd geom_point to get closer to what you want. I hope that helps!

    0 讨论(0)
  • 2020-12-09 05:14

    If you only work on a small area of the earth, here is a approximation. Each degree of the latitude represents 40075 / 360 kilometers. Each degrees of longitude represents (40075 / 360) * cos(latitude) kilomemters. With this, we can calculate approximately a data frame including all points on circles, knowing the circle centers and radius.

    library(ggplot2)
    library(ggmap)
    data = data.frame(
        ID = as.numeric(c(1:8)),
        longitude = as.numeric(c(-63.27462, -63.26499, -63.25658, -63.2519, -63.2311, -63.2175, -63.23623, -63.25958)),
        latitude = as.numeric(c(17.6328, 17.64614, 17.64755, 17.64632, 17.64888, 17.63113, 17.61252, 17.62463))
    )
    
    #################################################################################
    # create circles data frame from the centers data frame
    make_circles <- function(centers, radius, nPoints = 100){
        # centers: the data frame of centers with ID
        # radius: radius measured in kilometer
        #
        meanLat <- mean(centers$latitude)
        # length per longitude changes with lattitude, so need correction
        radiusLon <- radius /111 / cos(meanLat/57.3) 
        radiusLat <- radius / 111
        circleDF <- data.frame(ID = rep(centers$ID, each = nPoints))
        angle <- seq(0,2*pi,length.out = nPoints)
    
        circleDF$lon <- unlist(lapply(centers$longitude, function(x) x + radiusLon * cos(angle)))
        circleDF$lat <- unlist(lapply(centers$latitude, function(x) x + radiusLat * sin(angle)))
        return(circleDF)
    }
    
    # here is the data frame for all circles
    myCircles <- make_circles(data, 0.45)
    ##################################################################################
    
    
    island = get_map(location = c(lon = -63.247593, lat = 17.631598), zoom = 13, maptype = "satellite")
    islandMap = ggmap(island, extent = "panel", legend = "bottomright")
    RL = geom_point(aes(x = longitude, y = latitude), data = data, color = "#ff0000")
    islandMap + RL + 
        scale_x_continuous(limits = c(-63.280, -63.21), expand = c(0, 0)) + 
        scale_y_continuous(limits = c(17.605, 17.66), expand = c(0, 0)) +
        ########### add circles
        geom_polygon(data = myCircles, aes(lon, lat, group = ID), color = "red", alpha = 0)
    
    0 讨论(0)
  • A solution using st_buffer() from the sf package.

    library(ggmap)
    library(ggplot2)
    library(sf)
    
    data <- data.frame(
      ID = 1:8,
      longitude = c(-63.27462, -63.26499, -63.25658, -63.2519, 
                    -63.2311, -63.2175, -63.23623, -63.25958),
      latitude = c(17.6328, 17.64614, 17.64755, 17.64632, 
                   17.64888, 17.63113, 17.61252, 17.62463)
    )
    

    Convert data.frame to sf object:

    points_sf <- sf::st_as_sf(data, coords = c("longitude", "latitude"), crs = 4326)
    

    For this example we use UTM zone 20, which contains the coordinates of the island:

    data_sf_utm <- sf::st_transform(points_sf, "+proj=utm +zone=20")
    

    Now we can buffer the point by 450 meters:

    circle <- sf::st_buffer(data_sf_utm, dist = 450)
    

    ggmap seems to have some issues with geom_sf. Setting inherit.aes to FALSE returns the desired map.

    island <- ggmap::get_map(location = c(lon = -63.247593, lat = 17.631598), zoom = 14, maptype = "satellite")
    
    ggmap(island, extent = "panel", legend = "bottomright") + 
      geom_sf(data = points_sf, color = "red", inherit.aes = FALSE) +
      geom_sf(data = circle, color = "red", alpha = 0, inherit.aes = FALSE)
    

    Created on 2020-10-11 by the reprex package (v0.3.0)

    0 讨论(0)
  • 2020-12-09 05:27

    An accurate solution is using the geosphere::destPoint() function. This works without switching projections.

    Define function to determine 360 points with a certain radius around one point:

    library(dplyr)
    library(geosphere)
    
    fn_circle <- function(id1, lon1, lat1, radius){ 
       data.frame(ID = id1, degree = 1:360) %>%
          rowwise() %>%
          mutate(lon = destPoint(c(lon1, lat1), degree, radius)[1]) %>%
          mutate(lat = destPoint(c(lon1, lat1), degree, radius)[2]) 
    }
    

    Apply function to each row of data and convert to data.frame:

    circle <- apply(data, 1, function(x) fn_circle(x[1], x[2], x[3], 450))
    circle <- do.call(rbind, circle)
    

    Then the map can be easily obtained by:

    islandMap + 
       RL +
       scale_x_continuous(limits = c(-63.280, -63.21), expand = c(0, 0)) + 
       scale_y_continuous(limits = c(17.605, 17.66), expand = c(0, 0)) +
       geom_polygon(data = circle, aes(lon, lat, group = ID), color = "red", alpha = 0)
    

    0 讨论(0)
提交回复
热议问题