We often hear/read that one should avoid dynamic casting. I was wondering what would be \'good use\' examples of it, according to you?
Edit:
Yes, I\'m aware
My current toy project uses dynamic_cast twice; once to work around the lack of multiple dispatch in C++ (it's a visitor-style system that could use multiple dispatch instead of the dynamic_casts), and once to special-case a specific subtype.
Both of these are acceptable, in my view, though the former at least stems from a language deficit. I think this may be a common situation, in fact; most dynamic_casts (and a great many "design patterns" in general) are workarounds for specific language flaws rather than something that aim for.
It is very useful, however, most of the times it is too useful: if for getting the job done the easiest way is to do a dynamic_cast, it's more often than not a symptom of bad OO design, what in turn might lead to trouble in the future in unforeseen ways.
This recent thread gives an example of where it comes in handy. There is a base Shape class and classes Circle and Rectangle derived from it. In testing for equality, it is obvious that a Circle cannot be equal to a Rectangle and it would be a disaster to try to compare them. While iterating through a collection of pointers to Shapes, dynamic_cast does double duty, telling you if the shapes are comparable and giving you the proper objects to do the comparison on.
Vector iterator not dereferencable
Well it would really be nice with extension methods in C#.
For example let's say I have a list of objects and I want to get a list of all ids from them. I can step through them all and pull them out but I would like to segment out that code for reuse.
so something like
List<myObject> myObjectList = getMyObjects();
List<string> ids = myObjectList.PropertyList("id");
would be cool except on the extension method you won't know the type that is coming in.
So
public static List<string> PropertyList(this object objList, string propName) {
var genList = (objList.GetType())objList;
}
would be awesome.
Here's something I do often, it's not pretty, but it's simple and useful.
I often work with template containers that implement an interface, imagine something like
template<class T>
class MyVector : public ContainerInterface
...
Where ContainerInterface has basic useful stuff, but that's all. If I want a specific algorithm on vectors of integers without exposing my template implementation, it is useful to accept the interface objects and dynamic_cast it down to MyVector in the implementation. Example:
// function prototype (public API, in the header file)
void ProcessVector( ContainerInterface& vecIfce );
// function implementation (private, in the .cpp file)
void ProcessVector( ContainerInterface& vecIfce)
{
MyVector<int>& vecInt = dynamic_cast<MyVector<int> >(vecIfce);
// the cast throws bad_cast in case of error but you could use a
// more complex method to choose which low-level implementation
// to use, basically rolling by hand your own polymorphism.
// Process a vector of integers
...
}
I could add a Process() method to the ContainerInterface that would be polymorphically resolved, it would be a nicer OOP method, but I sometimes prefer to do it this way. When you have simple containers, a lot of algorithms and you want to keep your implementation hidden, dynamic_cast offers an easy and ugly solution.
You could also look at double-dispatch techniques.
HTH
It can be used for a bit of run-time type-safety when exposing handles to objects though a C interface. Have all the exposed classes inherit from a common base class. When accepting a handle to a function, first cast to the base class, then dynamic cast to the class you're expecting. If they passed in a non-sensical handle, you'll get an exception when the run-time can't find the rtti. If they passed in a valid handle of the wrong type, you get a NULL pointer and can throw your own exception. If they passed in the correct pointer, you're good to go. This isn't fool-proof, but it is certainly better at catching mistaken calls to the libraries than a straight reinterpret cast from a handle, and waiting until some data gets mysteriously corrupted when you pass the wrong handle in.