How do I calculate the intersection between a ray and a plane?
This produces the wrong results.
float denom = normal.dot(ray.direction
Let the ray be given parametrically by p = p0 + t*v
for initial point p0
and direction vector v
for t >= 0
.
Let the plane be given by dot(n, p) + d = 0
for normal vector n = (a, b, c)
and constant d
. If r
is a point on the plane, then d = - dot(n, r)
. Fully expanded, the plane equation may also be written ax + by + cz + d = 0
.
Substituting the ray into the plane equation gives:
t = - (dot(n, p) + d) / dot(n, v)
Example implementation:
std::optional<vec3> intersectRayWithPlane(
vec3 p, vec3 v, // ray
vec3 n, float d // plane
) {
float denom = dot(n, v);
// Prevent divide by zero:
if (abs(denom) <= 1e-4f)
return std::nullopt;
// If you want to ensure the ray reflects off only
// the "top" half of the plane, use this instead:
if (-denom <= 1e-4f)
return std::nullopt;
float t = -(dot(n, p) + d) / dot(n, v);
// Use pointy end of the ray.
// It is technically correct to compare t < 0,
// but that may be undesirable in a raytracer.
if (t <= 1e-4)
return std::nullopt;
return p + t * v;
}
implementation of vwvan's answer
Vector3 Intersect(Vector3 planeP, Vector3 planeN, Vector3 rayP, Vector3 rayD)
{
var d = Vector3.Dot(planeP, -planeN);
var t = -(d + rayP.z * planeN.z + rayP.y * planeN.y + rayP.x * planeN.x) / (rayD.z * planeN.z + rayD.y * planeN.y + rayD.x * planeN.x);
return rayP + t * rayD;
}
As wonce commented, you want to also allow the denominator to be negative, otherwise you will miss intersections with the front face of your plane. However, you still want a test to avoid a division by zero, which would indicate the ray being parallel to the plane. You also have a superfluous negation in your computation of t
. Overall, it should look like this:
float denom = normal.dot(ray.direction);
if (abs(denom) > 0.0001f) // your favorite epsilon
{
float t = (center - ray.origin).dot(normal) / denom;
if (t >= 0) return true; // you might want to allow an epsilon here too
}
return false;
First consider the math of the ray-plane intersection:
In general one intersects the parametric form of the ray, with the implicit form of the geometry.
So given a ray of the form x = a * t + a0, y = b * t + b0, z = c * t + c0;
and a plane of the form: A x * B y * C z + D = 0;
now substitute the x, y and z ray equations into the plane equation and you will get a polynomial in t. you then solve that polynomial for the real values of t. With those values of t you can back substitute into the ray equation to get the real values of x, y and z. Here it is in Maxima:
Note that the answer looks like the quotient of two dot products! The normal to a plane is the first three coefficients of the plane equation A, B, and C. You still need D to uniquely determine the plane. Then you code that up in the language of your choice like so:
Point3D intersectRayPlane(Ray ray, Plane plane)
{
Point3D point3D;
// Do the dot products and find t > epsilon that provides intersection.
return (point3D);
}