I want to split a bezier curve into a polygonal chain with n straight lines. The number of lines being dependent on a maximum allowed angle between 2 connecting lines. I\'m
A visual example on my website -> DXF -> polybezier. it is basically a recursive split with casteljau.
Bezier2Poly.prototype.convert = function(array,init) {
if (init) {
this.vertices = [];
}
if (!init && (Math.abs(this.controlPointsDiff(array[0], array[2])) < this.threshold
|| Math.abs(this.controlPointsDiff({x:array[2].x-array[1].x, y:array[2]-array[1].y}, array[2])) < this.threshold)) {
this.vertices.push(array[2]);
} else {
var split = this.splitBezier(array);
this.convert(split.b1);
this.convert(split.b2);
}
return this.vertices;
}
And judgement by: calculating the angle between the controlpoints and the line through the endpoint.
Bezier2Poly.prototype.controlPointsDiff = function (vector1, vector2) {
var angleCp1 = Math.atan2(vector1.y, vector1.x);
var angleCp2 = Math.atan2(vector2.y, vector2.x);
return angleCp1 - angleCp2;
}
This was a fascinating topic. The only thing I'm adding is tested C# code, to perhaps save somebody the trouble. And I tried to write for clarity as opposed to speed, so it mostly follows the AGG web site's PDF doc (see above) on the Casteljau algorithm. The Notation follows the diagram in that PDF.
public class Bezier
{
public PointF P1; // Begin Point
public PointF P2; // Control Point
public PointF P3; // Control Point
public PointF P4; // End Point
// Made these global so I could diagram the top solution
public Line L12;
public Line L23;
public Line L34;
public PointF P12;
public PointF P23;
public PointF P34;
public Line L1223;
public Line L2334;
public PointF P123;
public PointF P234;
public Line L123234;
public PointF P1234;
public Bezier(PointF p1, PointF p2, PointF p3, PointF p4)
{
P1 = p1; P2 = p2; P3 = p3; P4 = p4;
}
/// <summary>
/// Consider the classic Casteljau diagram
/// with the bezier points p1, p2, p3, p4 and lines l12, l23, l34
/// and their midpoint of line l12 being p12 ...
/// and the line between p12 p23 being L1223
/// and the midpoint of line L1223 being P1223 ...
/// </summary>
/// <param name="lines"></param>
public void SplitBezier( List<Line> lines)
{
L12 = new Line(this.P1, this.P2);
L23 = new Line(this.P2, this.P3);
L34 = new Line(this.P3, this.P4);
P12 = L12.MidPoint();
P23 = L23.MidPoint();
P34 = L34.MidPoint();
L1223 = new Line(P12, P23);
L2334 = new Line(P23, P34);
P123 = L1223.MidPoint();
P234 = L2334.MidPoint();
L123234 = new Line(P123, P234);
P1234 = L123234.MidPoint();
if (CurveIsFlat())
{
lines.Add(new Line(this.P1, this.P4));
return;
}
else
{
Bezier bz1 = new Bezier(this.P1, P12, P123, P1234);
bz1.SplitBezier(lines);
Bezier bz2 = new Bezier(P1234, P234, P34, this.P4);
bz2.SplitBezier(lines);
}
return;
}
/// <summary>
/// Check if points P1, P1234 and P2 are colinear (enough).
/// This is very simple-minded algo... there are better...
/// </summary>
/// <returns></returns>
public bool CurveIsFlat()
{
float t1 = (P2.Y - P1.Y) * (P3.X - P2.X);
float t2 = (P3.Y - P2.Y) * (P2.X - P1.X);
float delta = Math.Abs(t1 - t2);
return delta < 0.1; // Hard-coded constant
}
The PointF is from System.Drawing, and the Line class follows:
public class Line
{
PointF P1; PointF P2;
public Line(PointF pt1, PointF pt2)
{
P1 = pt1; P2 = pt2;
}
public PointF MidPoint()
{
return new PointF((P1.X + P2.X) / 2f, (P1.Y + P2.Y) / 2f);
}
}
A sample call creates the Bezier object with 4 points (begin, 2 control, and end), and returns a list of lines that approximate the Bezier:
TopBezier = new Bezier(Point1, Point2, Point3, Point4 );
List<Line> lines = new List<Line>();
TopBezier.SplitBezier(lines);
Thanks to Dr Jerry, AGG, and all the other contributors.
There are some alternatives for RSA flattening that are reported to be faster:
RSA vs PAA: http://www.cis.usouthal.edu/~hain/general/Theses/Ahmad_thesis.pdf
RSA vs CAA vs PAA: http://www.cis.usouthal.edu/~hain/general/Theses/Racherla_thesis.pdf
RSA = Recursive Subdivision Algorithm PAA = Parabolic Approximation Algorithm CAA = Circular Approximation Algorithm
According to Rachela, CAA is slower than the PAA by a factor of 1.5–2. CAA is as slow as RSA, but achieves required flatness better in offset curves.
It seems that PAA is best choice for actual curve and CAA is best for offset's of curve (when stroking curves).
I have tested PAA of both thesis, but they fail in some cases. Ahmad's PAA fails in collinear cases (all points on same line) and Rachela's PAA fails in collinear cases and in cases where both control points are equal. With some fixes, it may be possible to get them work as expected.
i solve it with qt for any svg path including bezier curve , i found in svg module a static function in qsvghandler.cpp which parsePathDataFast from your svg path to QPainterPath and the cherry on the cake!! QPainterPath have three native functions to convert your path to polygon (the big one toFillPolygon and the others which split in a list of polygon toSubpathPolygons or toFillPolygons) along with nice stuff like bounding box, intersected, translate ... ready to use with Boost::Geometry now, not so bad!
#ifndef PARSEPATHDATAFAST_H
#define PARSEPATHDATAFAST_H
#include <QPainterPath>
#include <QString>
bool parsePathDataFast(const QStringRef &dataStr, QPainterPath &path);
#endif // PARSEPATHDATAFAST_H
#include <QtCore/qmath.h>
#include <QtMath>
#include <QChar>
#include <QByteArray>
#include <QMatrix>
#include <parsepathdatafast.h>
Q_CORE_EXPORT double qstrtod(const char *s00, char const **se, bool *ok);
// '0' is 0x30 and '9' is 0x39
static inline bool isDigit(ushort ch)
{
static quint16 magic = 0x3ff;
return ((ch >> 4) == 3) && (magic >> (ch & 15));
}
static qreal toDouble(const QChar *&str)
{
const int maxLen = 255;//technically doubles can go til 308+ but whatever
char temp[maxLen+1];
int pos = 0;
if (*str == QLatin1Char('-')) {
temp[pos++] = '-';
++str;
} else if (*str == QLatin1Char('+')) {
++str;
}
while (isDigit(str->unicode()) && pos < maxLen) {
temp[pos++] = str->toLatin1();
++str;
}
if (*str == QLatin1Char('.') && pos < maxLen) {
temp[pos++] = '.';
++str;
}
while (isDigit(str->unicode()) && pos < maxLen) {
temp[pos++] = str->toLatin1();
++str;
}
bool exponent = false;
if ((*str == QLatin1Char('e') || *str == QLatin1Char('E')) && pos < maxLen) {
exponent = true;
temp[pos++] = 'e';
++str;
if ((*str == QLatin1Char('-') || *str == QLatin1Char('+')) && pos < maxLen) {
temp[pos++] = str->toLatin1();
++str;
}
while (isDigit(str->unicode()) && pos < maxLen) {
temp[pos++] = str->toLatin1();
++str;
}
}
temp[pos] = '\0';
qreal val;
if (!exponent && pos < 10) {
int ival = 0;
const char *t = temp;
bool neg = false;
if(*t == '-') {
neg = true;
++t;
}
while(*t && *t != '.') {
ival *= 10;
ival += (*t) - '0';
++t;
}
if(*t == '.') {
++t;
int div = 1;
while(*t) {
ival *= 10;
ival += (*t) - '0';
div *= 10;
++t;
}
val = ((qreal)ival)/((qreal)div);
} else {
val = ival;
}
if (neg)
val = -val;
} else {
bool ok = false;
val = qstrtod(temp, 0, &ok);
}
return val;
}
static inline void parseNumbersArray(const QChar *&str, QVarLengthArray<qreal, 8> &points)
{
while (str->isSpace())
++str;
while (isDigit(str->unicode()) ||
*str == QLatin1Char('-') || *str == QLatin1Char('+') ||
*str == QLatin1Char('.')) {
points.append(toDouble(str));
while (str->isSpace())
++str;
if (*str == QLatin1Char(','))
++str;
//eat the rest of space
while (str->isSpace())
++str;
}
}
/**
static QVector<qreal> parsePercentageList(const QChar *&str)
{
QVector<qreal> points;
if (!str)
return points;
while (str->isSpace())
++str;
while ((*str >= QLatin1Char('0') && *str <= QLatin1Char('9')) ||
*str == QLatin1Char('-') || *str == QLatin1Char('+') ||
*str == QLatin1Char('.')) {
points.append(toDouble(str));
while (str->isSpace())
++str;
if (*str == QLatin1Char('%'))
++str;
while (str->isSpace())
++str;
if (*str == QLatin1Char(','))
++str;
//eat the rest of space
while (str->isSpace())
++str;
}
return points;
}
**/
static void pathArcSegment(QPainterPath &path,
qreal xc, qreal yc,
qreal th0, qreal th1,
qreal rx, qreal ry, qreal xAxisRotation)
{
qreal sinTh, cosTh;
qreal a00, a01, a10, a11;
qreal x1, y1, x2, y2, x3, y3;
qreal t;
qreal thHalf;
sinTh = qSin(xAxisRotation * (M_PI / 180.0));
cosTh = qCos(xAxisRotation * (M_PI / 180.0));
a00 = cosTh * rx;
a01 = -sinTh * ry;
a10 = sinTh * rx;
a11 = cosTh * ry;
thHalf = 0.5 * (th1 - th0);
t = (8.0 / 3.0) * qSin(thHalf * 0.5) * qSin(thHalf * 0.5) / qSin(thHalf);
x1 = xc + qCos(th0) - t * qSin(th0);
y1 = yc + qSin(th0) + t * qCos(th0);
x3 = xc + qCos(th1);
y3 = yc + qSin(th1);
x2 = x3 + t * qSin(th1);
y2 = y3 - t * qCos(th1);
path.cubicTo(a00 * x1 + a01 * y1, a10 * x1 + a11 * y1,
a00 * x2 + a01 * y2, a10 * x2 + a11 * y2,
a00 * x3 + a01 * y3, a10 * x3 + a11 * y3);
}
// the arc handling code underneath is from XSVG (BSD license)
/*
* Copyright 2002 USC/Information Sciences Institute
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without
* fee, provided that the above copyright notice appear in all copies
* and that both that copyright notice and this permission notice
* appear in supporting documentation, and that the name of
* Information Sciences Institute not be used in advertising or
* publicity pertaining to distribution of the software without
* specific, written prior permission. Information Sciences Institute
* makes no representations about the suitability of this software for
* any purpose. It is provided "as is" without express or implied
* warranty.
*
* INFORMATION SCIENCES INSTITUTE DISCLAIMS ALL WARRANTIES WITH REGARD
* TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL INFORMATION SCIENCES
* INSTITUTE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
* OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*
*/
static void pathArc(QPainterPath &path,
qreal rx,
qreal ry,
qreal x_axis_rotation,
int large_arc_flag,
int sweep_flag,
qreal x,
qreal y,
qreal curx, qreal cury)
{
qreal sin_th, cos_th;
qreal a00, a01, a10, a11;
qreal x0, y0, x1, y1, xc, yc;
qreal d, sfactor, sfactor_sq;
qreal th0, th1, th_arc;
int i, n_segs;
qreal dx, dy, dx1, dy1, Pr1, Pr2, Px, Py, check;
rx = qAbs(rx);
ry = qAbs(ry);
sin_th = qSin(x_axis_rotation * (M_PI / 180.0));
cos_th = qCos(x_axis_rotation * (M_PI / 180.0));
dx = (curx - x) / 2.0;
dy = (cury - y) / 2.0;
dx1 = cos_th * dx + sin_th * dy;
dy1 = -sin_th * dx + cos_th * dy;
Pr1 = rx * rx;
Pr2 = ry * ry;
Px = dx1 * dx1;
Py = dy1 * dy1;
/* Spec : check if radii are large enough */
check = Px / Pr1 + Py / Pr2;
if (check > 1) {
rx = rx * qSqrt(check);
ry = ry * qSqrt(check);
}
a00 = cos_th / rx;
a01 = sin_th / rx;
a10 = -sin_th / ry;
a11 = cos_th / ry;
x0 = a00 * curx + a01 * cury;
y0 = a10 * curx + a11 * cury;
x1 = a00 * x + a01 * y;
y1 = a10 * x + a11 * y;
/* (x0, y0) is current point in transformed coordinate space.
(x1, y1) is new point in transformed coordinate space.
The arc fits a unit-radius circle in this space.
*/
d = (x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0);
sfactor_sq = 1.0 / d - 0.25;
if (sfactor_sq < 0) sfactor_sq = 0;
sfactor = qSqrt(sfactor_sq);
if (sweep_flag == large_arc_flag) sfactor = -sfactor;
xc = 0.5 * (x0 + x1) - sfactor * (y1 - y0);
yc = 0.5 * (y0 + y1) + sfactor * (x1 - x0);
/* (xc, yc) is center of the circle. */
th0 = qAtan2(y0 - yc, x0 - xc);
th1 = qAtan2(y1 - yc, x1 - xc);
th_arc = th1 - th0;
if (th_arc < 0 && sweep_flag)
th_arc += 2 * M_PI;
else if (th_arc > 0 && !sweep_flag)
th_arc -= 2 * M_PI;
n_segs = qCeil(qAbs(th_arc / (M_PI * 0.5 + 0.001)));
for (i = 0; i < n_segs; i++) {
pathArcSegment(path, xc, yc,
th0 + i * th_arc / n_segs,
th0 + (i + 1) * th_arc / n_segs,
rx, ry, x_axis_rotation);
}
}
bool parsePathDataFast(const QStringRef &dataStr, QPainterPath &path)
{
qreal x0 = 0, y0 = 0; // starting point
qreal x = 0, y = 0; // current point
char lastMode = 0;
QPointF ctrlPt;
const QChar *str = dataStr.constData();
const QChar *end = str + dataStr.size();
while (str != end) {
while (str->isSpace())
++str;
QChar pathElem = *str;
++str;
QChar endc = *end;
*const_cast<QChar *>(end) = 0; // parseNumbersArray requires 0-termination that QStringRef cannot guarantee
QVarLengthArray<qreal, 8> arg;
parseNumbersArray(str, arg);
*const_cast<QChar *>(end) = endc;
if (pathElem == QLatin1Char('z') || pathElem == QLatin1Char('Z'))
arg.append(0);//dummy
const qreal *num = arg.constData();
int count = arg.count();
while (count > 0) {
qreal offsetX = x; // correction offsets
qreal offsetY = y; // for relative commands
switch (pathElem.unicode()) {
case 'm': {
if (count < 2) {
num++;
count--;
break;
}
x = x0 = num[0] + offsetX;
y = y0 = num[1] + offsetY;
num += 2;
count -= 2;
path.moveTo(x0, y0);
// As per 1.2 spec 8.3.2 The "moveto" commands
// If a 'moveto' is followed by multiple pairs of coordinates without explicit commands,
// the subsequent pairs shall be treated as implicit 'lineto' commands.
pathElem = QLatin1Char('l');
}
break;
case 'M': {
if (count < 2) {
num++;
count--;
break;
}
x = x0 = num[0];
y = y0 = num[1];
num += 2;
count -= 2;
path.moveTo(x0, y0);
// As per 1.2 spec 8.3.2 The "moveto" commands
// If a 'moveto' is followed by multiple pairs of coordinates without explicit commands,
// the subsequent pairs shall be treated as implicit 'lineto' commands.
pathElem = QLatin1Char('L');
}
break;
case 'z':
case 'Z': {
x = x0;
y = y0;
count--; // skip dummy
num++;
path.closeSubpath();
}
break;
case 'l': {
if (count < 2) {
num++;
count--;
break;
}
x = num[0] + offsetX;
y = num[1] + offsetY;
num += 2;
count -= 2;
path.lineTo(x, y);
}
break;
case 'L': {
if (count < 2) {
num++;
count--;
break;
}
x = num[0];
y = num[1];
num += 2;
count -= 2;
path.lineTo(x, y);
}
break;
case 'h': {
x = num[0] + offsetX;
num++;
count--;
path.lineTo(x, y);
}
break;
case 'H': {
x = num[0];
num++;
count--;
path.lineTo(x, y);
}
break;
case 'v': {
y = num[0] + offsetY;
num++;
count--;
path.lineTo(x, y);
}
break;
case 'V': {
y = num[0];
num++;
count--;
path.lineTo(x, y);
}
break;
case 'c': {
if (count < 6) {
num += count;
count = 0;
break;
}
QPointF c1(num[0] + offsetX, num[1] + offsetY);
QPointF c2(num[2] + offsetX, num[3] + offsetY);
QPointF e(num[4] + offsetX, num[5] + offsetY);
num += 6;
count -= 6;
path.cubicTo(c1, c2, e);
ctrlPt = c2;
x = e.x();
y = e.y();
break;
}
case 'C': {
if (count < 6) {
num += count;
count = 0;
break;
}
QPointF c1(num[0], num[1]);
QPointF c2(num[2], num[3]);
QPointF e(num[4], num[5]);
num += 6;
count -= 6;
path.cubicTo(c1, c2, e);
ctrlPt = c2;
x = e.x();
y = e.y();
break;
}
case 's': {
if (count < 4) {
num += count;
count = 0;
break;
}
QPointF c1;
if (lastMode == 'c' || lastMode == 'C' ||
lastMode == 's' || lastMode == 'S')
c1 = QPointF(2*x-ctrlPt.x(), 2*y-ctrlPt.y());
else
c1 = QPointF(x, y);
QPointF c2(num[0] + offsetX, num[1] + offsetY);
QPointF e(num[2] + offsetX, num[3] + offsetY);
num += 4;
count -= 4;
path.cubicTo(c1, c2, e);
ctrlPt = c2;
x = e.x();
y = e.y();
break;
}
case 'S': {
if (count < 4) {
num += count;
count = 0;
break;
}
QPointF c1;
if (lastMode == 'c' || lastMode == 'C' ||
lastMode == 's' || lastMode == 'S')
c1 = QPointF(2*x-ctrlPt.x(), 2*y-ctrlPt.y());
else
c1 = QPointF(x, y);
QPointF c2(num[0], num[1]);
QPointF e(num[2], num[3]);
num += 4;
count -= 4;
path.cubicTo(c1, c2, e);
ctrlPt = c2;
x = e.x();
y = e.y();
break;
}
case 'q': {
if (count < 4) {
num += count;
count = 0;
break;
}
QPointF c(num[0] + offsetX, num[1] + offsetY);
QPointF e(num[2] + offsetX, num[3] + offsetY);
num += 4;
count -= 4;
path.quadTo(c, e);
ctrlPt = c;
x = e.x();
y = e.y();
break;
}
case 'Q': {
if (count < 4) {
num += count;
count = 0;
break;
}
QPointF c(num[0], num[1]);
QPointF e(num[2], num[3]);
num += 4;
count -= 4;
path.quadTo(c, e);
ctrlPt = c;
x = e.x();
y = e.y();
break;
}
case 't': {
if (count < 2) {
num += count;
count = 0;
break;
}
QPointF e(num[0] + offsetX, num[1] + offsetY);
num += 2;
count -= 2;
QPointF c;
if (lastMode == 'q' || lastMode == 'Q' ||
lastMode == 't' || lastMode == 'T')
c = QPointF(2*x-ctrlPt.x(), 2*y-ctrlPt.y());
else
c = QPointF(x, y);
path.quadTo(c, e);
ctrlPt = c;
x = e.x();
y = e.y();
break;
}
case 'T': {
if (count < 2) {
num += count;
count = 0;
break;
}
QPointF e(num[0], num[1]);
num += 2;
count -= 2;
QPointF c;
if (lastMode == 'q' || lastMode == 'Q' ||
lastMode == 't' || lastMode == 'T')
c = QPointF(2*x-ctrlPt.x(), 2*y-ctrlPt.y());
else
c = QPointF(x, y);
path.quadTo(c, e);
ctrlPt = c;
x = e.x();
y = e.y();
break;
}
case 'a': {
if (count < 7) {
num += count;
count = 0;
break;
}
qreal rx = (*num++);
qreal ry = (*num++);
qreal xAxisRotation = (*num++);
qreal largeArcFlag = (*num++);
qreal sweepFlag = (*num++);
qreal ex = (*num++) + offsetX;
qreal ey = (*num++) + offsetY;
count -= 7;
qreal curx = x;
qreal cury = y;
pathArc(path, rx, ry, xAxisRotation, int(largeArcFlag),
int(sweepFlag), ex, ey, curx, cury);
x = ex;
y = ey;
}
break;
case 'A': {
if (count < 7) {
num += count;
count = 0;
break;
}
qreal rx = (*num++);
qreal ry = (*num++);
qreal xAxisRotation = (*num++);
qreal largeArcFlag = (*num++);
qreal sweepFlag = (*num++);
qreal ex = (*num++);
qreal ey = (*num++);
count -= 7;
qreal curx = x;
qreal cury = y;
pathArc(path, rx, ry, xAxisRotation, int(largeArcFlag),
int(sweepFlag), ex, ey, curx, cury);
x = ex;
y = ey;
}
break;
default:
return false;
}
lastMode = pathElem.toLatin1();
}
}
return true;
}
One question, i doesn't find Q_PI constant in the standard qt headers and i replace it with M_PI hope is OK!!
Use de Casteljau algorithm recursively until the control points are approximately collinear. See for instance http://www.antigrain.com/research/adaptive_bezier/index.html.