I have a timeseries dataframe df
looks like this (the time seris happen within same day, but across different hours:
Depending on what your doing if I understand the question right can be done a lot more easily just using the resample method
#Get some data
index = pd.DatetimeIndex(start='2013-01-01 00:00', end='2013-01-31 00:00', freq='min')
a = np.random.randint(20, high=30, size=(len(index),1))
b = np.random.randint(14440, high=14449, size=(len(index),1))
df = pd.DataFrame(np.concatenate((a,b), axis=1), index=index, columns=['id','val'])
df.head()
Out[34]:
id val
2013-01-01 00:00:00 20 14446
2013-01-01 00:01:00 25 14443
2013-01-01 00:02:00 25 14448
2013-01-01 00:03:00 20 14445
2013-01-01 00:04:00 28 14442
#Define function for variance
import numpy as np
def pyfun(X):
if X.shape[0] <= 1:
result = nan
else:
total = 0
for x in X:
total = total + x
mean = float(total) / X.shape[0]
total = 0
for x in X:
total = total + (mean-x)**2
result = float(total) / (X.shape[0]-1)
return result
#Try it out
df.resample('5min', how=pyfun)
Out[53]:
id val
2013-01-01 00:00:00 12.3 5.7
2013-01-01 00:05:00 9.3 7.3
2013-01-01 00:10:00 4.7 0.8
2013-01-01 00:15:00 10.8 10.3
2013-01-01 00:20:00 11.5 1.5
Well that was easy. This is for your own functions but if you want to use a function from a library then all you need to do is specify the function in the how keyword
df.resample('5min', how=np.var).head()
Out[54]:
id val
2013-01-01 00:00:00 12.3 5.7
2013-01-01 00:05:00 9.3 7.3
2013-01-01 00:10:00 4.7 0.8
2013-01-01 00:15:00 10.8 10.3
2013-01-01 00:20:00 11.5 1.5
You can use the TimeGrouper
function in a groupy/apply
. With a TimeGrouper
you don't need to create your period column. I know you're not trying to compute the mean but I will use it as an example:
>>> df.groupby(pd.TimeGrouper('5Min'))['val'].mean()
time
2014-04-03 16:00:00 14390.000000
2014-04-03 16:05:00 14394.333333
2014-04-03 16:10:00 14396.500000
Or an example with an explicit apply
:
>>> df.groupby(pd.TimeGrouper('5Min'))['val'].apply(lambda x: len(x) > 3)
time
2014-04-03 16:00:00 False
2014-04-03 16:05:00 False
2014-04-03 16:10:00 True
Doctstring for TimeGrouper
:
Docstring for resample:class TimeGrouper@21
TimeGrouper(self, freq = 'Min', closed = None, label = None,
how = 'mean', nperiods = None, axis = 0, fill_method = None,
limit = None, loffset = None, kind = None, convention = None, base = 0,
**kwargs)
Custom groupby class for time-interval grouping
Parameters
----------
freq : pandas date offset or offset alias for identifying bin edges
closed : closed end of interval; left or right
label : interval boundary to use for labeling; left or right
nperiods : optional, integer
convention : {'start', 'end', 'e', 's'}
If axis is PeriodIndex
Notes
-----
Use begin, end, nperiods to generate intervals that cannot be derived
directly from the associated object
Edit
I don't know of an elegant way to create the period column, but the following will work:
>>> new = df.groupby(pd.TimeGrouper('5Min'),as_index=False).apply(lambda x: x['val'])
>>> df['period'] = new.index.get_level_values(0)
>>> df
id val period
time
2014-04-03 16:01:53 23 14389 0
2014-04-03 16:01:54 28 14391 0
2014-04-03 16:05:55 24 14393 1
2014-04-03 16:06:25 23 14395 1
2014-04-03 16:07:01 23 14395 1
2014-04-03 16:10:09 23 14395 2
2014-04-03 16:10:23 26 14397 2
2014-04-03 16:10:57 26 14397 2
2014-04-03 16:11:10 26 14397 2
It works because the groupby here with as_index=False actually returns the period column you want as the part of the multiindex and I just grab that part of the multiindex and assign to a new column in the orginal dataframe. You could do anything in the apply, I just want the index:
>>> new
time
0 2014-04-03 16:01:53 14389
2014-04-03 16:01:54 14391
1 2014-04-03 16:05:55 14393
2014-04-03 16:06:25 14395
2014-04-03 16:07:01 14395
2 2014-04-03 16:10:09 14395
2014-04-03 16:10:23 14397
2014-04-03 16:10:57 14397
2014-04-03 16:11:10 14397
>>> new.index.get_level_values(0)
Int64Index([0, 0, 1, 1, 1, 2, 2, 2, 2], dtype='int64')