I\'m checking if two strings a
and b
are permutations of each other, and I\'m wondering what the ideal way to do this is in Python. From the Zen of
Here's martinus code in python. It only works for ascii strings:
def is_permutation(a, b):
if len(a) != len(b):
return False
char_count = [0] * 256
for c in a:
char_count[ord(c)] += 1
for c in b:
char_count[ord(c)] -= 1
if char_count[ord(c)] < 0:
return False
return True
First, for solving such problems, e.g. whether String 1 and String 2 are exactly the same or not, easily, you can use an "if" since it is O(1). Second, it is important to consider that whether they are only numerical values or they can be also words in the string. If the latter one is true (words and numerical values are in the string at the same time), your first solution will not work. You can enhance it by using "ord()" function to make it ASCII numerical value. However, in the end, you are using sort; therefore, in the worst case your time complexity will be O(NlogN). This time complexity is not bad. But, you can do better. You can make it O(N). My "suggestion" is using Array(list) and set at the same time. Note that finding a value in Array needs iteration so it's time complexity is O(N), but searching a value in set (which I guess it is implemented with HashTable in Python, I'm not sure) has O(1) time complexity:
def Permutation2(Str1, Str2):
ArrStr1 = list(Str1) #convert Str1 to array
SetStr2 = set(Str2) #convert Str2 to set
ArrExtra = []
if len(Str1) != len(Str2): #check their length
return False
elif Str1 == Str2: #check their values
return True
for x in xrange(len(ArrStr1)):
ArrExtra.append(ArrStr1[x])
for x in xrange(len(ArrExtra)): #of course len(ArrExtra) == len(ArrStr1) ==len(ArrStr2)
if ArrExtra[x] in SetStr2: #checking in set is O(1)
continue
else:
return False
return True
# First method
def permutation(s1,s2):
if len(s1) != len(s2):return False;
return ' '.join(sorted(s1)) == ' '.join(sorted(s2))
# second method
def permutation1(s1,s2):
if len(s1) != len(s2):return False;
array = [0]*128;
for c in s1:
array[ord(c)] +=1
for c in s2:
array[ord(c)] -=1
if (array[ord(c)]) < 0:
return False
return True
Sorry that my code is not in Python, I have never used it, but I am sure this can be easily translated into python. I believe this is faster than all the other examples already posted. It is also O(n), but stops as soon as possible:
public boolean isPermutation(String a, String b) {
if (a.length() != b.length()) {
return false;
}
int[] charCount = new int[256];
for (int i = 0; i < a.length(); ++i) {
++charCount[a.charAt(i)];
}
for (int i = 0; i < b.length(); ++i) {
if (--charCount[b.charAt(i)] < 0) {
return false;
}
}
return true;
}
First I don't use a dictionary but an array of size 256 for all the characters. Accessing the index should be much faster. Then when the second string is iterated, I immediately return false when the count gets below 0. When the second loop has finished, you can be sure that the strings are a permutation, because the strings have equal length and no character was used more often in b compared to a.
I did a pretty thorough comparison in Java with all words in a book I had. The counting method beats the sorting method in every way. The results:
Testing against 9227 words.
Permutation testing by sorting ... done. 18.582 s
Permutation testing by counting ... done. 14.949 s
If anyone wants the algorithm and test data set, comment away.
Here are some timed executions on very small strings, using two different methods:
1. sorting
2. counting (specifically the original method by @namin).
a, b, c = 'confused', 'unfocused', 'foncused'
sort_method = lambda x,y: sorted(x) == sorted(y)
def count_method(a, b):
d = {}
for x in a:
d[x] = d.get(x, 0) + 1
for x in b:
d[x] = d.get(x, 0) - 1
for v in d.itervalues():
if v != 0:
return False
return True
Average run times of the 2 methods over 100,000 loops are:
non-match (string a and b)
$ python -m timeit -s 'import temp' 'temp.sort_method(temp.a, temp.b)'
100000 loops, best of 3: 9.72 usec per loop
$ python -m timeit -s 'import temp' 'temp.count_method(temp.a, temp.b)'
10000 loops, best of 3: 28.1 usec per loop
match (string a and c)
$ python -m timeit -s 'import temp' 'temp.sort_method(temp.a, temp.c)'
100000 loops, best of 3: 9.47 usec per loop
$ python -m timeit -s 'import temp' 'temp.count_method(temp.a, temp.c)'
100000 loops, best of 3: 24.6 usec per loop
Keep in mind that the strings used are very small. The time complexity of the methods are different, so you'll see different results with very large strings. Choose according to your data, you may even use a combination of the two.