How can I plot separate Pandas DataFrames as subplots?

后端 未结 9 2022
离开以前
离开以前 2020-11-22 17:00

I have a few Pandas DataFrames sharing the same value scale, but having different columns and indices. When invoking df.plot(), I get separate plot images. what

相关标签:
9条回答
  • 2020-11-22 17:36

    You can use the familiar Matplotlib style calling a figure and subplot, but you simply need to specify the current axis using plt.gca(). An example:

    plt.figure(1)
    plt.subplot(2,2,1)
    df.A.plot() #no need to specify for first axis
    plt.subplot(2,2,2)
    df.B.plot(ax=plt.gca())
    plt.subplot(2,2,3)
    df.C.plot(ax=plt.gca())
    

    etc...

    0 讨论(0)
  • 2020-11-22 17:36

    How to create multiple plots from a dictionary of dataframes with long (tidy) data

    • Assumptions

      • There is a dictionary of multiple dataframes of tidy data
        • Created by reading in from files
        • Created by separating a single dataframe into multiple dataframes
      • The categories, cat, may be overlapping, but all dataframes may not contain all values of cat
      • hue='cat'
    • Because dataframes are being iterated through, there's not guarantee that colors will be mapped the same for each plot

      • A custom color map needs to be created from the unique 'cat' values for all the dataframes
      • Since the colors will be the same, place one legend to the side of the plots, instead of a legend in every plot

    Imports and synthetic data

    import pandas as pd
    import numpy as np  # used for random data
    import random  # used for random data
    import matplotlib.pyplot as plt
    from matplotlib.patches import Patch  # for custom legend
    import seaborn as sns
    import math import ceil  # determine correct number of subplot
    
    
    # synthetic data
    df_dict = dict()
    for i in range(1, 7):
        np.random.seed(i)
        random.seed(i)
        data_length = 100
        data = {'cat': [random.choice(['A', 'B', 'C']) for _ in range(data_length)],
                'x': np.random.rand(data_length),
                'y': np.random.rand(data_length)}
        df_dict[i] = pd.DataFrame(data)
    
    
    # display(df_dict[1].head())
    
      cat         x         y
    0   A  0.417022  0.326645
    1   C  0.720324  0.527058
    2   A  0.000114  0.885942
    3   B  0.302333  0.357270
    4   A  0.146756  0.908535
    

    Create color mappings and plot

    # create color mapping based on all unique values of cat
    unique_cat = {cat for v in df_dict.values() for cat in v.cat.unique()}  # get unique cats
    colors = sns.color_palette('husl', n_colors=len(unique_cat))  # get a number of colors
    cmap = dict(zip(unique_cat, colors))  # zip values to colors
    
    # iterate through dictionary and plot
    col_nums = 3  # how many plots per row
    row_nums = math.ceil(len(df_dict) / col_nums)  # how many rows of plots
    plt.figure(figsize=(10, 5))  # change the figure size as needed
    for i, (k, v) in enumerate(df_dict.items(), 1):
        plt.subplot(row_nums, col_nums, i)  # create subplots
        p = sns.scatterplot(data=v, x='x', y='y', hue='cat', palette=cmap)
        p.legend_.remove()  # remove the individual plot legends
        plt.title(f'DataFrame: {k}')
    
    plt.tight_layout()
    # create legend from cmap
    patches = [Patch(color=v, label=k) for k, v in cmap.items()]
    # place legend outside of plot; change the right bbox value to move the legend up or down
    plt.legend(handles=patches, bbox_to_anchor=(1.06, 1.2), loc='center left', borderaxespad=0)
    plt.show()
    

    0 讨论(0)
  • 2020-11-22 17:36

    Here is a working pandas subplot example, where modes is the column names of the dataframe.

        dpi=200
        figure_size=(20, 10)
        fig, ax = plt.subplots(len(modes), 1, sharex="all", sharey="all", dpi=dpi)
        for i in range(len(modes)):
            ax[i] = pivot_df.loc[:, modes[i]].plot.bar(figsize=(figure_size[0], figure_size[1]*len(modes)),
                                                       ax=ax[i], title=modes[i], color=my_colors[i])
            ax[i].legend()
        fig.suptitle(name)
    

    0 讨论(0)
  • 2020-11-22 17:40

    Building on @joris response above, if you have already established a reference to the subplot, you can use the reference as well. For example,

    ax1 = plt.subplot2grid((50,100), (0, 0), colspan=20, rowspan=10)
    ...
    
    df.plot.barh(ax=ax1, stacked=True)
    
    0 讨论(0)
  • 2020-11-22 17:43

    You can see e.gs. in the documentation demonstrating joris answer. Also from the documentation, you could also set subplots=True and layout=(,) within the pandas plot function:

    df.plot(subplots=True, layout=(1,2))
    

    You could also use fig.add_subplot() which takes subplot grid parameters such as 221, 222, 223, 224, etc. as described in the post here. Nice examples of plot on pandas data frame, including subplots, can be seen in this ipython notebook.

    0 讨论(0)
  • 2020-11-22 17:50

    You may not need to use Pandas at all. Here's a matplotlib plot of cat frequencies:

    x = np.linspace(0, 2*np.pi, 400)
    y = np.sin(x**2)
    
    f, axes = plt.subplots(2, 1)
    for c, i in enumerate(axes):
      axes[c].plot(x, y)
      axes[c].set_title('cats')
    plt.tight_layout()
    
    0 讨论(0)
提交回复
热议问题