OpenCV dot target detection not finding all targets, and found circles are offset

前端 未结 3 641
醉酒成梦
醉酒成梦 2020-12-08 12:20

I\'m trying to detect the center of black/white dot targets, like in this picture. I\'ve tried to use the cv2.HoughCircles method but 1, am only able to detect 2 to 3 target

相关标签:
3条回答
  • 2020-12-08 12:53

    Most Detect Circles using Python Code

    import cv2
    import numpy as np
    
    img = cv2.imread('coin.jpg')
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray,(7,9),6)
    cimg = cv2.cvtColor(blur,cv2.COLOR_GRAY2BGR)
    circles = cv2.HoughCircles(blur,cv2.HOUGH_GRADIENT,1,50,
                                param1=120,param2=10,minRadius=2,maxRadius=30)
    
    
    circles = np.uint16(np.around(circles))
    for i in circles[0,:]:
        # draw the outer circle
        cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
        # draw the center of the circle
        cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
    
    cv2.imshow('detected circles',cimg)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
    0 讨论(0)
  • 2020-12-08 12:54

    Playing the code I wrote in another post, I was able to achieve a slightly better result:

    It's all about the parameters. It always is.

    There are 3 important functions that are called in this program that you should experiment with: cvSmooth(), cvCanny(), and cvHoughCircles(). Each of them has the potential to change the result drastically.

    And here is the C code:

    IplImage* img = NULL;
    if ((img = cvLoadImage(argv[1]))== 0)
    {
        printf("cvLoadImage failed\n");
    }
    
    IplImage* gray = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 1);
    CvMemStorage* storage = cvCreateMemStorage(0);
    
    cvCvtColor(img, gray, CV_BGR2GRAY);
    
    // This is done so as to prevent a lot of false circles from being detected
    cvSmooth(gray, gray, CV_GAUSSIAN, 7, 9);
    
    IplImage* canny = cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
    IplImage* rgbcanny = cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,3);
    cvCanny(gray, canny, 40, 240, 3);
    
    CvSeq* circles = cvHoughCircles(gray, storage, CV_HOUGH_GRADIENT, 2, gray->height/8, 120, 10, 2, 25);
    cvCvtColor(canny, rgbcanny, CV_GRAY2BGR);
    
    for (size_t i = 0; i < circles->total; i++)
    {
         // round the floats to an int
         float* p = (float*)cvGetSeqElem(circles, i);
         cv::Point center(cvRound(p[0]), cvRound(p[1]));
         int radius = cvRound(p[2]);
    
         // draw the circle center
         cvCircle(rgbcanny, center, 3, CV_RGB(0,255,0), -1, 8, 0 );
    
         // draw the circle outline
         cvCircle(rgbcanny, center, radius+1, CV_RGB(0,0,255), 2, 8, 0 );
    
         printf("x: %d y: %d r: %d\n",center.x,center.y, radius);
    }
    
    cvNamedWindow("circles", 1);
    cvShowImage("circles", rgbcanny);
    
    cvSaveImage("out.png", rgbcanny);
    cvWaitKey(0);
    

    I trust you have the skills to port this to Python.

    0 讨论(0)
  • 2020-12-08 13:03

    Since that circle pattern is fixed and well distinguished from the object, simple template matching should work reasonably well, check out cvMatchTemplate. For a more complex conditions (warping due to object shape or view geometry), you may try more robust features like SIFT or SURF (cvExtractSURF).

    0 讨论(0)
提交回复
热议问题