I\'m trying to detect the center of black/white dot targets, like in this picture. I\'ve tried to use the cv2.HoughCircles method but 1, am only able to detect 2 to 3 target
Most Detect Circles using Python Code
import cv2
import numpy as np
img = cv2.imread('coin.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray,(7,9),6)
cimg = cv2.cvtColor(blur,cv2.COLOR_GRAY2BGR)
circles = cv2.HoughCircles(blur,cv2.HOUGH_GRADIENT,1,50,
param1=120,param2=10,minRadius=2,maxRadius=30)
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
# draw the outer circle
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
cv2.imshow('detected circles',cimg)
cv2.waitKey(0)
cv2.destroyAllWindows()
Playing the code I wrote in another post, I was able to achieve a slightly better result:
It's all about the parameters. It always is.
There are 3 important functions that are called in this program that you should experiment with: cvSmooth()
, cvCanny()
, and cvHoughCircles()
. Each of them has the potential to change the result drastically.
And here is the C code:
IplImage* img = NULL;
if ((img = cvLoadImage(argv[1]))== 0)
{
printf("cvLoadImage failed\n");
}
IplImage* gray = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 1);
CvMemStorage* storage = cvCreateMemStorage(0);
cvCvtColor(img, gray, CV_BGR2GRAY);
// This is done so as to prevent a lot of false circles from being detected
cvSmooth(gray, gray, CV_GAUSSIAN, 7, 9);
IplImage* canny = cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
IplImage* rgbcanny = cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,3);
cvCanny(gray, canny, 40, 240, 3);
CvSeq* circles = cvHoughCircles(gray, storage, CV_HOUGH_GRADIENT, 2, gray->height/8, 120, 10, 2, 25);
cvCvtColor(canny, rgbcanny, CV_GRAY2BGR);
for (size_t i = 0; i < circles->total; i++)
{
// round the floats to an int
float* p = (float*)cvGetSeqElem(circles, i);
cv::Point center(cvRound(p[0]), cvRound(p[1]));
int radius = cvRound(p[2]);
// draw the circle center
cvCircle(rgbcanny, center, 3, CV_RGB(0,255,0), -1, 8, 0 );
// draw the circle outline
cvCircle(rgbcanny, center, radius+1, CV_RGB(0,0,255), 2, 8, 0 );
printf("x: %d y: %d r: %d\n",center.x,center.y, radius);
}
cvNamedWindow("circles", 1);
cvShowImage("circles", rgbcanny);
cvSaveImage("out.png", rgbcanny);
cvWaitKey(0);
I trust you have the skills to port this to Python.
Since that circle pattern is fixed and well distinguished from the object, simple template matching should work reasonably well, check out cvMatchTemplate
. For a more complex conditions (warping due to object shape or view geometry), you may try more robust features like SIFT or SURF (cvExtractSURF
).