Compiled Linux kernel 2.6.34.3 for ARMv7 (Cortex-a8)
I looked into the kernel code and it looks like the Linux kernel sets the hardware page tables for the kernel
See http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0211k/Bihgfcgf.html
For ARM5 and lower the TTB table is fixed in size and alignment (to 16k). Each level 1 entry represents 1MB. The table entry is 32bits (16k*1M/(32bit/8) = 4GB). The TTBCR controls TTBR0 table size. From the above URL,
Selecting which Translation Table Base Register is used
The Translation Table Base Register is selected as follows:
If N = 0, always use Translation Table Base Register 0.
- This is the default case at reset. It is backwards compatible with ARMv5 or earlier processors.
If N is greater than 0, then:
- if bits [31:32-N] of the Virtual Address are all 0, use Translation Table Base Register 0 otherwise use Translation Table Base Register 1.
So the size of TTBR0 also sets the memory split. For a traditional Linux 3G/1G 1G/3G, the value 2 should be selected. 4kB table == 1G memory == bits 31..30 are zero. For a value of 6 the table is 256byte == 64MB == bits 31..26 are zero.
In Linux parlance these are page global entries (and this splits this page global directory). The entries can point to another table or just be a 1MB segment. The next table entries are page middle Linux directories and then the final page table entries. I think the page middle entries are unused on the ARM.
The MMU hardware doesn't walk the tables every time. There is a TLB (translation look aside buffer). It is like a cache for the MMU tables. When the OS updates these tables, the TLB must be flushed or the processor will use stale entries. Similarly the ARM cache is virtual tagged, so changing the mapping may also mean the cache must be flushed. For these reasons, you never want to change things on a context switch. Shared libraries text (say libc.so) should be the same on a context switch. Hopefully each process has libc.so mapped at the same virtual address. There is a big gain in doing this; lower memory use and good I-cache use.
The domain and PID registers as well as supervisor/user modes can also control memory accesses. These are single registers that can be toggled on a context switch.
See http://lwn.net/images/conf/rtlws11/papers/proc/p01.pdf for info on PID and domain use on the ARMV5. The current Linux source doesn't do exactly like the paper describes. It is entirely possible that Linux doesn't need to use this mechanism and sets the TTBCR to zero so that the VM code for ARM sub-architectures is similar.
Edit: I don't believe the TTBCR functionality can be used to achieve a 3G/1G split. I think the Rutger's page was discussing the TTBCR generically and not in the Linux context. Also, at least the 2.6.38 Linux used domains or DACR but does not use the pid or fcse as it supports a limited number of processes.
http://lwn.net/Articles/106177/ - also referenced on the Rutgers page.
I have very little knowledge about ARM architecture, but from what I read in your enclosed link, then I guess Linux implements its virtual-memory management that way:
High-order bits of the virtual address determine which one to use. The base of the table is stored in one of two base registers (TTBR0 or TTBR1), depending on whether the topmost n bits of the virtual address are 0 (use TTBR0) or not (use TTBR1). The value for n is defined by the Translation Table Base Control Register (TTBCR).
The register TTBCR
tells which addresses will be translated from page-tables pointed to by TTBR0
or TTBR1
. If TTBCR
contains 0xc000000
, then any address from 0
to 0xbfffffff
is translated by the page-table pointed by TTBR0
, and any address from 0xc0000000
to 0xffffffff
is translated by the page-table pointed by TTBR1
. That match the Linux memory-split of 3GB for user process / 1GB for the kernel.
This allows one to have a design where the operating system and memory-mapped I/O are located in the upper part of the address space and managed by the page table in TTBR1 and user processes are in the lower part of memory and managed by the page table in TTB0. On a context switch, the operating system has to change TTBR0 to point to the first-level table for the new process. TTBR1 will still contain the memory map for the operating system and memory-mapped I/O.
Hence, the value of TTBR1
should never change because you want the kernel to be permanently mapped (think of what happens when an interrupt is raised). On the other hand, TTBR0
is modified at every process-switch, it contains the page-table of the current process.
The TTBR0 holds the base address of translation table 0, and information about the memory it occupies.
This is one of the translation tables for the stage 1 translation of memory accesses from modes other than Hyp mode
The TTBR registers are used together to determine addressing for the full 32-bit or 40-bit address space. Which register is used for what address ranges is controlled via the tXsz bits in the TTBCR. There is an entry for t0sz corresponding to TTBR0 and t1sz for TTBR1.
The page tables addressed by each TTBRx register are independent, but you typically find most Linux implementations just use TTBR0. Linux expects to be able to use a 3G/1G address space partitioning scheme, which is not supported by ARM. If you look at page B3-1345 of the ARMv7 Architecture Reference Manual, you'll see that the value of t0sz and t1sz determine the address ranges supported by TTBR0 and TTBR1 respectively. To add confusion to disorientation, it is even possible to have disjoined address spaces where TTBR0 and TTBR1 support ranges that are not contiguous, resulting in a hole in the system address space. Good times!
To answer your main question though, it is recommended by ARM that TTBR0 be used to store the offset to the page tables used by USER processes, and TTBR1 be used to store the offset to the page tables used by the KERNEL. I have yet to see a single implementation that actually does this. Almost exclusively TTBR0 is used in all cases, with TTBR1 containing a duplicate copy of the L1 tables.
So how does this work? The value of TTBR is stored as part of the process state and simply restored each time a process with switched out. This is how it is expected to work. Originally, TTBR1 would hold a constant value for the kernel tables and never be replaced or swapped out, whereas TTBR0 would be changed each time you context switch between processes. Apparently most Linux implementations for ARM have decided to just basically eliminate the use of TTBR1 and stick to using TTBR0 for everything.
If you want to test this theory on your device, try whacking TTBR1 and watch nothing happen. Then try whacking TTBR0 and watch your system crash. I've yet to encounter a single instance that didn't result in this exact same result. Long story short, TTBR1 is useless by Linux, and TTBR0 is used almost exclusively and simply swapped out.
Now, once you get to LPAE support, throw all this away and start over again. This is the implementation where you will start to see the value of t0sz and t1sz being something other than zero, and hence N as well.