This
STR=\"Hello\\nWorld\"
echo $STR
produces as output
Hello\\nWorld
instead of
Hello
Wo
What I did based on the other answers was
NEWLINE=$'\n'
my_var="__between eggs and bacon__"
echo "spam${NEWLINE}eggs${my_var}bacon${NEWLINE}knight"
# which outputs:
spam
eggs__between eggs and bacon__bacon
knight
Disclaimer: I first wrote this and then stumbled upon this question. I thought this solution wasn't yet posted, and saw that tlwhitec did post a similar answer. Still I'm posting this because I hope it's a useful and thorough explanation.
Short answer:
This seems quite a portable solution, as it works on quite some shells (see comment).
This way you can get a real newline into a variable.
The benefit of this solution is that you don't have to use newlines in your source code, so you can indent your code any way you want, and the solution still works. This makes it robust. It's also portable.
# Robust way to put a real newline in a variable (bash, dash, ksh, zsh; indentation-resistant).
nl="$(printf '\nq')"
nl=${nl%q}
Longer answer:
Explanation of the above solution:
The newline would normally lost due to command substitution, but to prevent that, we add a 'q' and remove it afterwards. (The reason for the double quotes is explained further below.)
We can prove that the variable contains an actual newline character (0x0A):
printf '%s' "$nl" | hexdump -C
00000000 0a |.|
00000001
(Note that the '%s'
was needed, otherwise printf will translate a literal '\n'
string into an actual 0x0A character, meaning we would prove nothing.)
Of course, instead of the solution proposed in this answer, one could use this as well (but...):
nl='
'
... but that's less robust and can be easily damaged by accidentally indenting the code, or by forgetting to dedent it afterwards, which makes it inconvenient to use in (indented) functions, whereas the earlier solution is robust.
Now, as for the double quotes:
The reason for the double quotes "
surrounding the command substitution as in nl="$(printf '\nq')"
is that you can then even prefix the variable assignment with the local
keyword or builtin (such as in functions), and it will still work on all shells, whereas otherwise the dash
shell would have trouble, in the sense that dash would otherwise lose the 'q' and you'd end up with an empty 'nl' variable (again, due to command substitution).
That issue is better illustrated with another example:
dash_trouble_example() {
e=$(echo hello world) # Not using 'local'.
echo "$e" # Fine. Outputs 'hello world' in all shells.
local e=$(echo hello world) # But now, when using 'local' without double quotes ...:
echo "$e" # ... oops, outputs just 'hello' in dash,
# ... but 'hello world' in bash and zsh.
local f="$(echo hello world)" # Finally, using 'local' and surrounding with double quotes.
echo "$f" # Solved. Outputs 'hello world' in dash, zsh, and bash.
# So back to our newline example, if we want to use 'local', we need
# double quotes to surround the command substitution:
# (If we didn't use double quotes here, then in dash the 'nl' variable
# would be empty.)
local nl="$(printf '\nq')"
nl=${nl%q}
}
Practical example of the above solution:
# Parsing lines in a for loop by setting IFS to a real newline character:
nl="$(printf '\nq')"
nl=${nl%q}
IFS=$nl
for i in $(printf '%b' 'this is line 1\nthis is line 2'); do
echo "i=$i"
done
# Desired output:
# i=this is line 1
# i=this is line 2
# Exercise:
# Try running this example without the IFS=$nl assignment, and predict the outcome.
I'm no bash expert, but this one worked for me:
STR1="Hello"
STR2="World"
NEWSTR=$(cat << EOF
$STR1
$STR2
EOF
)
echo "$NEWSTR"
I found this easier to formatting the texts.
A $ right before single quotation marks '...\n...' as follows, however double quotation marks doesn't work.
$ echo $'Hello\nWorld'
Hello
World
$ echo $"Hello\nWorld"
Hello\nWorld
The only simple alternative is to actually type a new line in the variable:
$ STR='new
line'
$ printf '%s' "$STR"
new
line
Yes, that means writing Enter where needed in the code.
There are several equivalents to a new line
character.
\n ### A common way to represent a new line character.
\012 ### Octal value of a new line character.
\x0A ### Hexadecimal value of a new line character.
But all those require "an interpretation" by some tool (POSIX printf):
echo -e "new\nline" ### on POSIX echo, `-e` is not required.
printf 'new\nline' ### Understood by POSIX printf.
printf 'new\012line' ### Valid in POSIX printf.
printf 'new\x0Aline'
printf '%b' 'new\0012line' ### Valid in POSIX printf.
And therefore, the tool is required to build a string with a new-line:
$ STR="$(printf 'new\nline')"
$ printf '%s' "$STR"
new
line
In some shells, the sequence $' is an special shell expansion. Known to work in ksh93, bash and zsh:
$ STR=$'new\nline'
Of course, more complex solutions are also possible:
$ echo '6e65770a6c696e650a' | xxd -p -r
new
line
Or
$ echo "new line" | sed 's/ \+/\n/g'
new
line
On my system (Ubuntu 17.10) your example just works as desired, both when typed from the command line (into sh
) and when executed as a sh
script:
[bash]§ sh
$ STR="Hello\nWorld"
$ echo $STR
Hello
World
$ exit
[bash]§ echo "STR=\"Hello\nWorld\"
> echo \$STR" > test-str.sh
[bash]§ cat test-str.sh
STR="Hello\nWorld"
echo $STR
[bash]§ sh test-str.sh
Hello
World
I guess this answers your question: it just works. (I have not tried to figure out details such as at what moment exactly the substitution of the newline character for \n
happens in sh
).
However, i noticed that this same script would behave differently when executed with bash
and would print out Hello\nWorld
instead:
[bash]§ bash test-str.sh
Hello\nWorld
I've managed to get the desired output with bash
as follows:
[bash]§ STR="Hello
> World"
[bash]§ echo "$STR"
Note the double quotes around $STR
. This behaves identically if saved and run as a bash
script.
The following also gives the desired output:
[bash]§ echo "Hello
> World"