Pandas: parse merged header columns from Excel

前端 未结 1 725
鱼传尺愫
鱼传尺愫 2020-12-08 09:04

The data in excel sheets is stored as follows:

   Area     |          Product1     |      Product2        |      Product3
            |      sales|sales.Valu         


        
相关标签:
1条回答
  • 2020-12-08 09:37

    Suppose your DataFrame is df:

    import numpy as np
    import pandas as pd
    
    nan = np.nan
    df = pd.DataFrame([
        (nan, nan, nan, 'Auto loan', nan)
        , ('Branch Code', 'Branch Name', 'Region', 'No of accounts'
           , 'Portfolio Outstanding')
        , (3000, 'Name1', 'Central', 0, 0)
        , (3001, 'Name2', 'Central', 0, 0)
    ])
    

    so that it looks like this:

                 0            1        2               3                      4
    0          NaN          NaN      NaN       Auto loan                    NaN
    1  Branch Code  Branch Name   Region  No of accounts  Portfolio Outstanding
    2         3000       Name1  Central               0                      0
    3         3001       Name2  Central               0                      0
    

    Then first forward fill the NaNs in the first two rows (thus propagating 'Auto loan', for example).

    df.iloc[0:2] = df.iloc[0:2].fillna(method='ffill', axis=1)
    

    Next fill in the remaining NaNs with empty strings:

    df.iloc[0:2] = df.iloc[0:2].fillna('')
    

    Now join the two rows together with . and assign that as the column level values:

    df.columns = df.iloc[0:2].apply(lambda x: '.'.join([y for y in x if y]), axis=0)
    

    And finally, remove the first two rows:

    df = df.iloc[2:]
    

    This yields

      Branch Code Branch Name   Region Auto loan.No of accounts  \
    2        3000      Name1  Central                        0   
    3        3001      Name2  Central                        0   
    
      Auto loan.Portfolio Outstanding  
    2                               0  
    3                               0  
    

    Alternatively, you could create a MultiIndex column instead of creating a flat column index:

    import numpy as np
    import pandas as pd
    
    nan = np.nan
    df = pd.DataFrame([
        (nan, nan, nan, 'Auto loan', nan)
        , ('Branch Code', 'Branch Name', 'Region', 'No of accounts'
           , 'Portfolio Outstanding')
        , (3000, 'Name1', 'Central', 0, 0)
        , (3001, 'Name2', 'Central', 0, 0)
    ])
    df.iloc[0:2] = df.iloc[0:2].fillna(method='ffill', axis=1)
    df.iloc[0:2] = df.iloc[0:2].fillna('Area')
    
    df.columns = pd.MultiIndex.from_tuples(
        zip(*df.iloc[0:2].to_records(index=False).tolist()))
    df = df.iloc[2:]
    

    Now df looks like this:

             Area                           Auto loan                      
      Branch Code Branch Name   Region No of accounts Portfolio Outstanding
    2        3000      Name1  Central              0                     0
    3        3001      Name2  Central              0                     0
    

    the column is a MultiIndex:

    In [275]: df.columns
    Out[275]: 
    MultiIndex(levels=[[u'Area', u'Auto loan'], [u'Branch Code', u'Branch Name', u'No of accounts', u'Portfolio Outstanding', u'Region']],
               labels=[[0, 0, 0, 1, 1], [0, 1, 4, 2, 3]])
    

    The column has two levels. The first level has values [u'Area', u'Auto loan'], the second has values [u'Branch Code', u'Branch Name', u'No of accounts', u'Portfolio Outstanding', u'Region'].

    You can then access a column by specifing the value from both levels:

    print(df.loc[:, ('Area', 'Branch Name')])
    # 2    Name1
    # 3    Name2
    # Name: (Area, Branch Name), dtype: object
    
    print(df.loc[:, ('Auto loan', 'No of accounts')])
    # 2    0
    # 3    0
    # Name: (Auto loan, No of accounts), dtype: object
    

    One advantage of using a MultiIndex is that you can easily select all columns which have a certain level value. For instance, to select the sub-DataFrame having to do with Auto loans you could use:

    In [279]: df.loc[:, 'Auto loan']
    Out[279]: 
      No of accounts Portfolio Outstanding
    2              0                     0
    3              0                     0
    

    For more on selecting rows and columns from a MultiIndex, see MultiIndexing Using Slicers.

    0 讨论(0)
提交回复
热议问题