All the initialized global/static variables will go to initialized data section. All the uninitialized global/static variables will go to uninitialed data secti
The behavior is dependent upon the C implementation. It may end up in either .data or .bss, and to increase changes that it does not end up in .data taking redundant space up, it's better not to explicitly initialize it to 0, since it will be set to 0 anyway if the object is of static duration.
It's easy enough to test for a specific compiler:
$ cat bss.c
int global_no_value;
int global_initialized = 0;
int main(int argc, char* argv[]) {
return 0;
}
$ make bss
cc bss.c -o bss
$ readelf -s bss | grep global_
32: 0000000000400420 0 FUNC LOCAL DEFAULT 13 __do_global_dtors_aux
40: 0000000000400570 0 FUNC LOCAL DEFAULT 13 __do_global_ctors_aux
55: 0000000000601028 4 OBJECT GLOBAL DEFAULT 25 global_initialized
60: 000000000060102c 4 OBJECT GLOBAL DEFAULT 25 global_no_value
We're looking for the location of 0000000000601028
and 000000000060102c
:
$ readelf -S bss
There are 30 section headers, starting at offset 0x1170:
Section Headers:
[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
...
[24] .data PROGBITS 0000000000601008 00001008
0000000000000010 0000000000000000 WA 0 0 8
[25] .bss NOBITS 0000000000601018 00001018
0000000000000018 0000000000000000 WA 0 0 8
It looks like both values are stored in the .bss
section on my system: gcc version 4.5.2 (Ubuntu/Linaro 4.5.2-8ubuntu4)
.
Compiler is free to put such variable into bss
as well as into data
. For example, GCC has a special option controlling such behavior:
-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are initialized to zero into BSS. This can save space in the resulting code. This option turns off this behavior because some programs explicitly rely on variables going to the data section. E.g., so that the resulting executable can find the beginning of that section and/or make assumptions based on that.
The default is
-fzero-initialized-in-bss
.
Tried with the following example (test.c
file):
int put_me_somewhere = 0;
int main(int argc, char* argv[]) { return 0; }
Compiling with no options (implicitly -fzero-initialized-in-bss
):
$ touch test.c && make test && objdump -x test | grep put_me_somewhere
cc test.c -o test
0000000000601028 g O .bss 0000000000000004 put_me_somewhere
Compiling with -fno-zero-initialized-in-bss
option:
$ touch test.c && make test CFLAGS=-fno-zero-initialized-in-bss && objdump -x test | grep put_me_somewhere
cc -fno-zero-initialized-in-bss test.c -o test
0000000000601018 g O .data 0000000000000004 put_me_somewhere