How to groupby consecutive values in pandas DataFrame

前端 未结 2 680
星月不相逢
星月不相逢 2020-11-22 16:45

I have a column in a DataFrame with values:

[1, 1, -1, 1, -1, -1]

How can I group them like this?

[1,1] [-1] [1] [-1, -1]
<         


        
相关标签:
2条回答
  • 2020-11-22 17:15

    You can use groupby by custom Series:

    df = pd.DataFrame({'a': [1, 1, -1, 1, -1, -1]})
    print (df)
       a
    0  1
    1  1
    2 -1
    3  1
    4 -1
    5 -1
    
    print ((df.a != df.a.shift()).cumsum())
    0    1
    1    1
    2    2
    3    3
    4    4
    5    4
    Name: a, dtype: int32
    
    for i, g in df.groupby([(df.a != df.a.shift()).cumsum()]):
        print (i)
        print (g)
        print (g.a.tolist())
    
       a
    0  1
    1  1
    [1, 1]
    2
       a
    2 -1
    [-1]
    3
       a
    3  1
    [1]
    4
       a
    4 -1
    5 -1
    [-1, -1]
    
    0 讨论(0)
  • 2020-11-22 17:20

    Using groupby from itertools data from Jez

    from itertools import groupby
    [ list(group) for key, group in groupby(df.a.values.tolist())]
    Out[361]: [[1, 1], [-1], [1], [-1, -1]]
    
    0 讨论(0)
提交回复
热议问题