What is the best way to divide a list into roughly equal parts? For example, if the list has 7 elements and is split it into 2 parts, we want to get 3 elements in o
Let's say you want to split a list [1, 2, 3, 4, 5, 6, 7, 8] into 3 element lists
like [[1,2,3], [4, 5, 6], [7, 8]], where if the last remaining elements left are less than 3, they are grouped together.
my_list = [1, 2, 3, 4, 5, 6, 7, 8]
my_list2 = [my_list[i:i+3] for i in range(0, len(my_list), 3)]
print(my_list2)
Output: [[1,2,3], [4, 5, 6], [7, 8]]
Where length of one part is 3. Replace 3 with your own chunk size.
This is the raison d'être for numpy.array_split*:
>>> import numpy as np
>>> print(*np.array_split(range(10), 3))
[0 1 2 3] [4 5 6] [7 8 9]
>>> print(*np.array_split(range(10), 4))
[0 1 2] [3 4 5] [6 7] [8 9]
>>> print(*np.array_split(range(10), 5))
[0 1] [2 3] [4 5] [6 7] [8 9]
*credit to Zero Piraeus in room 6
Another way would be something like this, the idea here is to use grouper, but get rid of None
. In this case we'll have all 'small_parts' formed from elements at the first part of the list, and 'larger_parts' from the later part of the list. Length of 'larger parts' is len(small_parts) + 1. We need to consider x as two different sub-parts.
from itertools import izip_longest
import numpy as np
def grouper(n, iterable, fillvalue=None): # This is grouper from itertools
"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
args = [iter(iterable)] * n
return izip_longest(fillvalue=fillvalue, *args)
def another_chunk(x,num):
extra_ele = len(x)%num #gives number of parts that will have an extra element
small_part = int(np.floor(len(x)/num)) #gives number of elements in a small part
new_x = list(grouper(small_part,x[:small_part*(num-extra_ele)]))
new_x.extend(list(grouper(small_part+1,x[small_part*(num-extra_ele):])))
return new_x
The way I have it set up returns a list of tuples:
>>> x = range(14)
>>> another_chunk(x,3)
[(0, 1, 2, 3), (4, 5, 6, 7, 8), (9, 10, 11, 12, 13)]
>>> another_chunk(x,4)
[(0, 1, 2), (3, 4, 5), (6, 7, 8, 9), (10, 11, 12, 13)]
>>> another_chunk(x,5)
[(0, 1), (2, 3, 4), (5, 6, 7), (8, 9, 10), (11, 12, 13)]
>>>
I've written code in this case myself:
def chunk_ports(port_start, port_end, portions):
if port_end < port_start:
return None
total = port_end - port_start + 1
fractions = int(math.floor(float(total) / portions))
results = []
# No enough to chuck.
if fractions < 1:
return None
# Reverse, so any additional items would be in the first range.
_e = port_end
for i in range(portions, 0, -1):
print "i", i
if i == 1:
_s = port_start
else:
_s = _e - fractions + 1
results.append((_s, _e))
_e = _s - 1
results.reverse()
return results
divide_ports(1, 10, 9) would return
[(1, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10)]
You could also use:
split=lambda x,n: x if not x else [x[:n]]+[split([] if not -(len(x)-n) else x[-(len(x)-n):],n)][0]
split([1,2,3,4,5,6,7,8,9],2)
[[1, 2], [3, 4], [5, 6], [7, 8], [9]]
As long as you don't want anything silly like continuous chunks:
>>> def chunkify(lst,n):
... return [lst[i::n] for i in xrange(n)]
...
>>> chunkify(range(13), 3)
[[0, 3, 6, 9, 12], [1, 4, 7, 10], [2, 5, 8, 11]]