I got this problem from an interview with Microsoft.
Given an array of random integers, write an algorithm in C that removes duplicated numbers an
If you are allowed to use C++, a call to std::sort
followed by a call to std::unique
will give you the answer. The time complexity is O(N log N) for the sort and O(N) for the unique traversal.
And if C++ is off the table there isn't anything that keeps these same algorithms from being written in C.
Here is my solution.
///// find duplicates in an array and remove them
void unique(int* input, int n)
{
merge_sort(input, 0, n) ;
int prev = 0 ;
for(int i = 1 ; i < n ; i++)
{
if(input[i] != input[prev])
if(prev < i-1)
input[prev++] = input[i] ;
}
}
After review the problem, here is my delphi way, that may help
var
A: Array of Integer;
I,J,C,K, P: Integer;
begin
C:=10;
SetLength(A,10);
A[0]:=1; A[1]:=4; A[2]:=2; A[3]:=6; A[4]:=3; A[5]:=4;
A[6]:=3; A[7]:=4; A[8]:=2; A[9]:=5;
for I := 0 to C-1 do
begin
for J := I+1 to C-1 do
if A[I]=A[J] then
begin
for K := C-1 Downto J do
if A[J]<>A[k] then
begin
P:=A[K];
A[K]:=0;
A[J]:=P;
C:=K;
break;
end
else
begin
A[K]:=0;
C:=K;
end;
end;
end;
//tructate array
setlength(A,C);
end;
One more efficient implementation
int i, j;
/* new length of modified array */
int NewLength = 1;
for(i=1; i< Length; i++){
for(j=0; j< NewLength ; j++)
{
if(array[i] == array[j])
break;
}
/* if none of the values in index[0..j] of array is not same as array[i],
then copy the current value to corresponding new position in array */
if (j==NewLength )
array[NewLength++] = array[i];
}
In this implementation there is no need for sorting the array. Also if a duplicate element is found, there is no need for shifting all elements after this by one position.
The output of this code is array[] with size NewLength
Here we are starting from the 2nd elemt in array and comparing it with all the elements in array up to this array. We are holding an extra index variable 'NewLength' for modifying the input array. NewLength variabel is initialized to 0.
Element in array[1] will be compared with array[0]. If they are different, then value in array[NewLength] will be modified with array[1] and increment NewLength. If they are same, NewLength will not be modified.
So if we have an array [1 2 1 3 1], then
In First pass of 'j' loop, array[1] (2) will be compared with array0, then 2 will be written to array[NewLength] = array[1] so array will be [1 2] since NewLength = 2
In second pass of 'j' loop, array[2] (1) will be compared with array0 and array1. Here since array[2] (1) and array0 are same loop will break here. so array will be [1 2] since NewLength = 2
and so on
In JAVA,
Integer[] arrayInteger = {1,2,3,4,3,2,4,6,7,8,9,9,10};
String value ="";
for(Integer i:arrayInteger)
{
if(!value.contains(Integer.toString(i))){
value +=Integer.toString(i)+",";
}
}
String[] arraySplitToString = value.split(",");
Integer[] arrayIntResult = new Integer[arraySplitToString.length];
for(int i = 0 ; i < arraySplitToString.length ; i++){
arrayIntResult[i] = Integer.parseInt(arraySplitToString[i]);
}
output: { 1, 2, 3, 4, 6, 7, 8, 9, 10}
hope this will help
If you are looking for the superior O-notation, then sorting the array with an O(n log n) sort then doing a O(n) traversal may be the best route. Without sorting, you are looking at O(n^2).
Edit: if you are just doing integers, then you can also do radix sort to get O(n).