I\'m trying to initialize a data.frame without any rows. Basically, I want to specify the data types for each column and name them, but not have any rows created as a result
I keep this function handy for whenever I need it, and change the column names and classes to suit the use case:
make_df <- function() { data.frame(name=character(),
profile=character(),
sector=character(),
type=character(),
year_range=character(),
link=character(),
stringsAsFactors = F)
}
make_df()
[1] name profile sector type year_range link
<0 rows> (or 0-length row.names)
The most efficient way to do this is to use structure
to create a list that has the class "data.frame"
:
structure(list(Date = as.Date(character()), File = character(), User = character()),
class = "data.frame")
# [1] Date File User
# <0 rows> (or 0-length row.names)
To put this into perspective compared to the presently accepted answer, here's a simple benchmark:
s <- function() structure(list(Date = as.Date(character()),
File = character(),
User = character()),
class = "data.frame")
d <- function() data.frame(Date = as.Date(character()),
File = character(),
User = character(),
stringsAsFactors = FALSE)
library("microbenchmark")
microbenchmark(s(), d())
# Unit: microseconds
# expr min lq mean median uq max neval
# s() 58.503 66.5860 90.7682 82.1735 101.803 469.560 100
# d() 370.644 382.5755 523.3397 420.1025 604.654 1565.711 100
If you want to declare such a data.frame
with many columns, it'll probably be a pain to type all the column classes out by hand. Especially if you can make use of rep
, this approach is easy and fast (about 15% faster than the other solution that can be generalized like this):
If your desired column classes are in a vector colClasses
, you can do the following:
library(data.table)
setnames(setDF(lapply(colClasses, function(x) eval(call(x)))), col.names)
lapply
will result in a list of desired length, each element of which is simply an empty typed vector like numeric()
or integer()
.
setDF
converts this list
by reference to a data.frame
.
setnames
adds the desired names by reference.
Speed comparison:
classes <- c("character", "numeric", "factor",
"integer", "logical","raw", "complex")
NN <- 300
colClasses <- sample(classes, NN, replace = TRUE)
col.names <- paste0("V", 1:NN)
setDF(lapply(colClasses, function(x) eval(call(x))))
library(microbenchmark)
microbenchmark(times = 1000,
read = read.table(text = "", colClasses = colClasses,
col.names = col.names),
DT = setnames(setDF(lapply(colClasses, function(x)
eval(call(x)))), col.names))
# Unit: milliseconds
# expr min lq mean median uq max neval cld
# read 2.598226 2.707445 3.247340 2.747835 2.800134 22.46545 1000 b
# DT 2.257448 2.357754 2.895453 2.401408 2.453778 17.20883 1000 a
It's also faster than using structure
in a similar way:
microbenchmark(times = 1000,
DT = setnames(setDF(lapply(colClasses, function(x)
eval(call(x)))), col.names),
struct = eval(parse(text=paste0(
"structure(list(",
paste(paste0(col.names, "=",
colClasses, "()"), collapse = ","),
"), class = \"data.frame\")"))))
#Unit: milliseconds
# expr min lq mean median uq max neval cld
# DT 2.068121 2.167180 2.821868 2.211214 2.268569 143.70901 1000 a
# struct 2.613944 2.723053 3.177748 2.767746 2.831422 21.44862 1000 b
If you don't mind not specifying data types explicitly, you can do it this way:
headers<-c("Date","File","User")
df <- as.data.frame(matrix(,ncol=3,nrow=0))
names(df)<-headers
#then bind incoming data frame with col types to set data types
df<-rbind(df, new_df)
Just initialize it with empty vectors:
df <- data.frame(Date=as.Date(character()),
File=character(),
User=character(),
stringsAsFactors=FALSE)
Here's an other example with different column types :
df <- data.frame(Doubles=double(),
Ints=integer(),
Factors=factor(),
Logicals=logical(),
Characters=character(),
stringsAsFactors=FALSE)
str(df)
> str(df)
'data.frame': 0 obs. of 5 variables:
$ Doubles : num
$ Ints : int
$ Factors : Factor w/ 0 levels:
$ Logicals : logi
$ Characters: chr
N.B. :
Initializing a data.frame
with an empty column of the wrong type does not prevent further additions of rows having columns of different types.
This method is just a bit safer in the sense that you'll have the correct column types from the beginning, hence if your code relies on some column type checking, it will work even with a data.frame
with zero rows.
You could use read.table
with an empty string for the input text
as follows:
colClasses = c("Date", "character", "character")
col.names = c("Date", "File", "User")
df <- read.table(text = "",
colClasses = colClasses,
col.names = col.names)
Alternatively specifying the col.names
as a string:
df <- read.csv(text="Date,File,User", colClasses = colClasses)
Thanks to Richard Scriven for the improvement