Create an empty data.frame

前端 未结 17 939
猫巷女王i
猫巷女王i 2020-11-22 16:06

I\'m trying to initialize a data.frame without any rows. Basically, I want to specify the data types for each column and name them, but not have any rows created as a result

相关标签:
17条回答
  • 2020-11-22 16:21

    I keep this function handy for whenever I need it, and change the column names and classes to suit the use case:

    make_df <- function() { data.frame(name=character(),
                         profile=character(),
                         sector=character(),
                         type=character(),
                         year_range=character(),
                         link=character(),
                         stringsAsFactors = F)
    }
    
    make_df()
    [1] name       profile    sector     type       year_range link      
    <0 rows> (or 0-length row.names)
    
    0 讨论(0)
  • 2020-11-22 16:22

    The most efficient way to do this is to use structure to create a list that has the class "data.frame":

    structure(list(Date = as.Date(character()), File = character(), User = character()), 
              class = "data.frame")
    # [1] Date File User
    # <0 rows> (or 0-length row.names)
    

    To put this into perspective compared to the presently accepted answer, here's a simple benchmark:

    s <- function() structure(list(Date = as.Date(character()), 
                                   File = character(), 
                                   User = character()), 
                              class = "data.frame")
    d <- function() data.frame(Date = as.Date(character()),
                               File = character(), 
                               User = character(), 
                               stringsAsFactors = FALSE) 
    library("microbenchmark")
    microbenchmark(s(), d())
    # Unit: microseconds
    #  expr     min       lq     mean   median      uq      max neval
    #   s()  58.503  66.5860  90.7682  82.1735 101.803  469.560   100
    #   d() 370.644 382.5755 523.3397 420.1025 604.654 1565.711   100
    
    0 讨论(0)
  • 2020-11-22 16:24

    If you want to declare such a data.frame with many columns, it'll probably be a pain to type all the column classes out by hand. Especially if you can make use of rep, this approach is easy and fast (about 15% faster than the other solution that can be generalized like this):

    If your desired column classes are in a vector colClasses, you can do the following:

    library(data.table)
    setnames(setDF(lapply(colClasses, function(x) eval(call(x)))), col.names)
    

    lapply will result in a list of desired length, each element of which is simply an empty typed vector like numeric() or integer().

    setDF converts this list by reference to a data.frame.

    setnames adds the desired names by reference.

    Speed comparison:

    classes <- c("character", "numeric", "factor",
                 "integer", "logical","raw", "complex")
    
    NN <- 300
    colClasses <- sample(classes, NN, replace = TRUE)
    col.names <- paste0("V", 1:NN)
    
    setDF(lapply(colClasses, function(x) eval(call(x))))
    
    library(microbenchmark)
    microbenchmark(times = 1000,
                   read = read.table(text = "", colClasses = colClasses,
                                     col.names = col.names),
                   DT = setnames(setDF(lapply(colClasses, function(x)
                     eval(call(x)))), col.names))
    # Unit: milliseconds
    #  expr      min       lq     mean   median       uq      max neval cld
    #  read 2.598226 2.707445 3.247340 2.747835 2.800134 22.46545  1000   b
    #    DT 2.257448 2.357754 2.895453 2.401408 2.453778 17.20883  1000  a 
    

    It's also faster than using structure in a similar way:

    microbenchmark(times = 1000,
                   DT = setnames(setDF(lapply(colClasses, function(x)
                     eval(call(x)))), col.names),
                   struct = eval(parse(text=paste0(
                     "structure(list(", 
                     paste(paste0(col.names, "=", 
                                  colClasses, "()"), collapse = ","),
                     "), class = \"data.frame\")"))))
    #Unit: milliseconds
    #   expr      min       lq     mean   median       uq       max neval cld
    #     DT 2.068121 2.167180 2.821868 2.211214 2.268569 143.70901  1000  a 
    # struct 2.613944 2.723053 3.177748 2.767746 2.831422  21.44862  1000   b
    
    0 讨论(0)
  • 2020-11-22 16:25

    If you don't mind not specifying data types explicitly, you can do it this way:

    headers<-c("Date","File","User")
    df <- as.data.frame(matrix(,ncol=3,nrow=0))
    names(df)<-headers
    
    #then bind incoming data frame with col types to set data types
    df<-rbind(df, new_df)
    
    0 讨论(0)
  • 2020-11-22 16:26

    Just initialize it with empty vectors:

    df <- data.frame(Date=as.Date(character()),
                     File=character(), 
                     User=character(), 
                     stringsAsFactors=FALSE) 
    

    Here's an other example with different column types :

    df <- data.frame(Doubles=double(),
                     Ints=integer(),
                     Factors=factor(),
                     Logicals=logical(),
                     Characters=character(),
                     stringsAsFactors=FALSE)
    
    str(df)
    > str(df)
    'data.frame':   0 obs. of  5 variables:
     $ Doubles   : num 
     $ Ints      : int 
     $ Factors   : Factor w/ 0 levels: 
     $ Logicals  : logi 
     $ Characters: chr 
    

    N.B. :

    Initializing a data.frame with an empty column of the wrong type does not prevent further additions of rows having columns of different types.
    This method is just a bit safer in the sense that you'll have the correct column types from the beginning, hence if your code relies on some column type checking, it will work even with a data.frame with zero rows.

    0 讨论(0)
  • 2020-11-22 16:26

    You could use read.table with an empty string for the input text as follows:

    colClasses = c("Date", "character", "character")
    col.names = c("Date", "File", "User")
    
    df <- read.table(text = "",
                     colClasses = colClasses,
                     col.names = col.names)
    

    Alternatively specifying the col.names as a string:

    df <- read.csv(text="Date,File,User", colClasses = colClasses)
    

    Thanks to Richard Scriven for the improvement

    0 讨论(0)
提交回复
热议问题