I would like to be able to compute the inverse of a general NxN
matrix in C/C++ using lapack.
My understanding is that the way to do an inversion in la
First, M has to be a two-dimensional array, like double M[3][3]
. Your array is, mathematically speaking, a 1x9 vector, which is not invertible.
N is a pointer to an int for the order of the matrix - in this case, N=3.
A is a pointer to the LU
factorization of the matrix, which
you can get by running the LAPACK
routine dgetrf
.
LDA is an integer for the "leading element" of the matrix, which lets you pick out a subset of a bigger matrix if you want to just invert a little piece. If you want to invert the whole matrix, LDA should just be equal to N.
IPIV is the pivot indices of the
matrix, in other words, it's a list
of instructions of what rows to swap
in order to invert the matrix. IPIV
should be generated by the LAPACK
routine dgetrf
.
LWORK and WORK are the "workspaces" used by LAPACK. If you are inverting the whole matrix, LWORK should be an int equal to N^2, and WORK should be a double array with LWORK elements.
INFO is just a status variable to tell you whether the operation completed successfully. Since not all matrices are invertible, I would recommend that you send this to some sort of error-checking system. INFO=0 for successful operation, INFO=-i if the i'th argument had an incorrect input value, and INFO > 0 if the matrix is not invertible.
So, for your code, I would do something like this:
int main(){
double M[3][3] = { {1 , 2 , 3},
{4 , 5 , 6},
{7 , 8 , 9}}
double pivotArray[3]; //since our matrix has three rows
int errorHandler;
double lapackWorkspace[9];
// dgetrf(M,N,A,LDA,IPIV,INFO) means invert LDA columns of an M by N matrix
// called A, sending the pivot indices to IPIV, and spitting error
// information to INFO.
// also don't forget (like I did) that when you pass a two-dimensional array
// to a function you need to specify the number of "rows"
dgetrf_(3,3,M[3][],3,pivotArray[3],&errorHandler);
//some sort of error check
dgetri_(3,M[3][],3,pivotArray[3],9,lapackWorkspace,&errorHandler);
//another error check
}
Here is a working version of the above using OpenBlas interface to LAPACKE. Link with openblas library (LAPACKE is already contained)
#include <stdio.h>
#include "cblas.h"
#include "lapacke.h"
// inplace inverse n x n matrix A.
// matrix A is Column Major (i.e. firts line, second line ... *not* C[][] order)
// returns:
// ret = 0 on success
// ret < 0 illegal argument value
// ret > 0 singular matrix
lapack_int matInv(double *A, unsigned n)
{
int ipiv[n+1];
lapack_int ret;
ret = LAPACKE_dgetrf(LAPACK_COL_MAJOR,
n,
n,
A,
n,
ipiv);
if (ret !=0)
return ret;
ret = LAPACKE_dgetri(LAPACK_COL_MAJOR,
n,
A,
n,
ipiv);
return ret;
}
int main()
{
double A[] = {
0.378589, 0.971711, 0.016087, 0.037668, 0.312398,
0.756377, 0.345708, 0.922947, 0.846671, 0.856103,
0.732510, 0.108942, 0.476969, 0.398254, 0.507045,
0.162608, 0.227770, 0.533074, 0.807075, 0.180335,
0.517006, 0.315992, 0.914848, 0.460825, 0.731980
};
for (int i=0; i<25; i++) {
if ((i%5) == 0) putchar('\n');
printf("%+12.8f ",A[i]);
}
putchar('\n');
matInv(A,5);
for (int i=0; i<25; i++) {
if ((i%5) == 0) putchar('\n');
printf("%+12.8f ",A[i]);
}
putchar('\n');
}
Example:
% g++ -I [OpenBlas path]/include/ example.cpp [OpenBlas path]/lib/libopenblas.a
% a.out
+0.37858900 +0.97171100 +0.01608700 +0.03766800 +0.31239800
+0.75637700 +0.34570800 +0.92294700 +0.84667100 +0.85610300
+0.73251000 +0.10894200 +0.47696900 +0.39825400 +0.50704500
+0.16260800 +0.22777000 +0.53307400 +0.80707500 +0.18033500
+0.51700600 +0.31599200 +0.91484800 +0.46082500 +0.73198000
+0.24335255 -2.67946180 +3.57538817 +0.83711880 +0.34704217
+1.02790497 -1.05086895 -0.07468137 +0.71041070 +0.66708313
-0.21087237 -4.47765165 +1.73958308 +1.73999641 +3.69324020
-0.14100897 +2.34977565 -0.93725915 +0.47383541 -2.15554470
-0.26329660 +6.46315378 -4.07721533 -3.37094863 -2.42580445
Here is a working version of Spencer Nelson's example above. One mystery about it is that the input matrix is in row-major order, even though it appears to call the underlying fortran routine dgetri
. I am led to believe that all the underlying fortran routines require column-major order, but I am no expert on LAPACK, in fact, I'm using this example to help me learn it. But, that one mystery aside:
The input matrix in the example is singular. LAPACK tries to tell you that by returning a 3
in the errorHandler
. I changed the 9
in that matrix to a 19
, getting an errorHandler
of 0
signalling success, and compared the result to that from Mathematica
. The comparison was also successful and confirmed that the matrix in the example should be in row-major order, as presented.
Here is the working code:
#include <stdio.h>
#include <stddef.h>
#include <lapacke.h>
int main() {
int N = 3;
int NN = 9;
double M[3][3] = { {1 , 2 , 3},
{4 , 5 , 6},
{7 , 8 , 9} };
int pivotArray[3]; //since our matrix has three rows
int errorHandler;
double lapackWorkspace[9];
// dgetrf(M,N,A,LDA,IPIV,INFO) means invert LDA columns of an M by N matrix
// called A, sending the pivot indices to IPIV, and spitting error information
// to INFO. also don't forget (like I did) that when you pass a two-dimensional
// array to a function you need to specify the number of "rows"
dgetrf_(&N, &N, M[0], &N, pivotArray, &errorHandler);
printf ("dgetrf eh, %d, should be zero\n", errorHandler);
dgetri_(&N, M[0], &N, pivotArray, lapackWorkspace, &NN, &errorHandler);
printf ("dgetri eh, %d, should be zero\n", errorHandler);
for (size_t row = 0; row < N; ++row)
{ for (size_t col = 0; col < N; ++col)
{ printf ("%g", M[row][col]);
if (N-1 != col)
{ printf (", "); } }
if (N-1 != row)
{ printf ("\n"); } }
return 0; }
I built and ran it as follows on a Mac:
gcc main.c -llapacke -llapack
./a.out
I did an nm
on the LAPACKE library and found the following:
liblapacke.a(lapacke_dgetri.o):
U _LAPACKE_dge_nancheck
0000000000000000 T _LAPACKE_dgetri
U _LAPACKE_dgetri_work
U _LAPACKE_xerbla
U _free
U _malloc
liblapacke.a(lapacke_dgetri_work.o):
U _LAPACKE_dge_trans
0000000000000000 T _LAPACKE_dgetri_work
U _LAPACKE_xerbla
U _dgetri_
U _free
U _malloc
and it looks like there is a LAPACKE [sic] wrapper that would presumably relieve us of having to take addresses everywhere for fortran's convenience, but I am probably not going to get around to trying it because I have a way forward.
EDIT
Here is a working version that bypasses LAPACKE [sic], using LAPACK fortran routines directly. I do not understand why a row-major input produces correct results, but I confirmed it again in Mathematica.
#include <stdio.h>
#include <stddef.h>
int main() {
int N = 3;
int NN = 9;
double M[3][3] = { {1 , 2 , 3},
{4 , 5 , 6},
{7 , 8 , 19} };
int pivotArray[3]; //since our matrix has three rows
int errorHandler;
double lapackWorkspace[9];
/* from http://www.netlib.no/netlib/lapack/double/dgetrf.f
SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION A( LDA, * )
*/
extern void dgetrf_ (int * m, int * n, double * A, int * LDA, int * IPIV,
int * INFO);
/* from http://www.netlib.no/netlib/lapack/double/dgetri.f
SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION A( LDA, * ), WORK( * )
*/
extern void dgetri_ (int * n, double * A, int * LDA, int * IPIV,
double * WORK, int * LWORK, int * INFO);
// dgetrf(M,N,A,LDA,IPIV,INFO) means invert LDA columns of an M by N matrix
// called A, sending the pivot indices to IPIV, and spitting error information
// to INFO. also don't forget (like I did) that when you pass a two-dimensional
// array to a function you need to specify the number of "rows"
dgetrf_(&N, &N, M[0], &N, pivotArray, &errorHandler);
printf ("dgetrf eh, %d, should be zero\n", errorHandler);
dgetri_(&N, M[0], &N, pivotArray, lapackWorkspace, &NN, &errorHandler);
printf ("dgetri eh, %d, should be zero\n", errorHandler);
for (size_t row = 0; row < N; ++row)
{ for (size_t col = 0; col < N; ++col)
{ printf ("%g", M[row][col]);
if (N-1 != col)
{ printf (", "); } }
if (N-1 != row)
{ printf ("\n"); } }
return 0; }
built and run like this:
$ gcc foo.c -llapack
$ ./a.out
dgetrf eh, 0, should be zero
dgetri eh, 0, should be zero
-1.56667, 0.466667, 0.1
1.13333, 0.0666667, -0.2
0.1, -0.2, 0.1
EDIT
The mystery no longer appears to be a mystery. I think the computations are being done in column-major order, as they must, but I am both inputting and printing the matrices as if they were in row-major order. I have two bugs that cancel each other out so things look row-ish even though they're column-ish.
Here is the working code for computing the inverse of a matrix using lapack in C/C++:
#include <cstdio>
extern "C" {
// LU decomoposition of a general matrix
void dgetrf_(int* M, int *N, double* A, int* lda, int* IPIV, int* INFO);
// generate inverse of a matrix given its LU decomposition
void dgetri_(int* N, double* A, int* lda, int* IPIV, double* WORK, int* lwork, int* INFO);
}
void inverse(double* A, int N)
{
int *IPIV = new int[N];
int LWORK = N*N;
double *WORK = new double[LWORK];
int INFO;
dgetrf_(&N,&N,A,&N,IPIV,&INFO);
dgetri_(&N,A,&N,IPIV,WORK,&LWORK,&INFO);
delete[] IPIV;
delete[] WORK;
}
int main(){
double A [2*2] = {
1,2,
3,4
};
inverse(A, 2);
printf("%f %f\n", A[0], A[1]);
printf("%f %f\n", A[2], A[3]);
return 0;
}