I\'m having a hard time understanding why
#include
using namespace std;
int fib(int x) {
if (x == 1) {
return 1;
} else {
int fib(int x)
{
if (x == 0)
return 0;
else if (x == 1 || x == 2)
return 1;
else
return (fib(x - 1) + fib(x - 2));
}
My solution is:
#include <iostream>
int fib(int number);
void call_fib(void);
int main()
{
call_fib();
return 0;
}
void call_fib(void)
{
int input;
std::cout<<"enter a number\t";
std::cin>> input;
if (input <0)
{
input=0;
std::cout<<"that is not a valid input\n" ;
call_fib();
}
else
{
std::cout<<"the "<<input <<"th fibonacci number is "<<fib(input);
}
}
int fib(int x)
{
if (x==0){return 0;}
else if (x==2 || x==1)
{
return 1;
}
else if (x>0)
{
return fib(x-1)+fib(x-2);
}
else
return -1;
}
it returns fib(0)=0 and error if negitive
I think it's the best solution of fibonacci using recursion.
#include<bits/stdc++.h>
typedef unsigned long long ull;
typedef long long ll;
ull FIBO[100005];
using namespace std;
ull fibo(ull n)
{
if(n==1||n==0)
return n;
if(FIBO[n]!=0)
return FIBO[n];
FIBO[n] = (fibo(n-1)+fibo(n-2));
return FIBO[n];
}
int main()
{
for(long long i =34;i<=60;i++)
cout<<fibo(i)<<" " ;
return 0;
}
I think that all that solutions are inefficient. They require a lot of recursive calls to get the result.
unsigned fib(unsigned n) {
if(n == 0) return 0;
if(n == 1) return 1;
return fib(n-1) + fib(n-2);
}
This code requires 14 calls to get result for fib(5), 177 for fin(10) and 2.7kk for fib(30).
You should better use this approach or if you want to use recursion try this:
unsigned fib(unsigned n, unsigned prev1 = 0, unsigned prev2 = 1, int depth = 2)
{
if(n == 0) return 0;
if(n == 1) return 1;
if(depth < n) return fib(n, prev2, prev1+prev2, depth+1);
return prev1+prev2;
}
This function requires n recursive calls to calculate Fibonacci number for n. You can still use it by calling fib(10) because all other parameters have default values.
When x==2
you call fib(1)
and fib(0)
:
return fib(2-1)+fib(2-2);
Consider what will happen when fib(0)
is evaluated...
I think this solution is short and seem looks nice:
long long fib(int n){
return n<=2?1:fib(n-1)+fib(n-2);
}
Edit : as jweyrich mentioned, true recursive function should be:
long long fib(int n){
return n<2?n:fib(n-1)+fib(n-2);
}
(because fib(0) = 0. but base on above recursive formula, fib(0) will be 1)
To understand recursion algorithm, you should draw to your paper, and the most important thing is : "Think normal as often".