How to create weighted adjacency list/matrix from edge list?

前端 未结 4 800
一生所求
一生所求 2020-12-07 18:21

My problem is very simple: I need to create an adjacency list/matrix from a list of edges.

I have an edge list stored in a csv document with column1 = node1 and col

相关标签:
4条回答
  • 2020-12-07 18:34

    This response uses base R only. The result is a standard matrix used to represent the adjacency matrix.

     el  <- cbind(a=1:5, b=5:1) #edgelist (a=origin, b=destination)
     mat <- matrix(0, 5, 5)
     mat[el] <- 1
     mat
     #    [,1] [,2] [,3] [,4] [,5]
     #[1,]    0    0    0    0    1
     #[2,]    0    0    0    1    0
     #[3,]    0    0    1    0    0
     #[4,]    0    1    0    0    0
     #[5,]    1    0    0    0    0
    

    Here mat is your adjacency matrix defined from edgelist el, which is a simple cbind of the vectors 1:5 and 5:1.

    If your edgelist includes weights, then you need a slightly different solution.

    el <- cbind(a=1:5, b=5:1, c=c(3,1,2,1,1)) # edgelist (a=origin, b=destination, c=weight)
    mat<-matrix(0, 5, 5)
    for(i in 1:NROW(el)) mat[ el[i,1], el[i,2] ] <- el[i,3]  # SEE UPDATE
    mat
    #     [,1] [,2] [,3] [,4] [,5]
    #[1,]    0    0    0    0    3
    #[2,]    0    0    0    1    0
    #[3,]    0    0    2    0    0
    #[4,]    0    1    0    0    0
    #[5,]    1    0    0    0    0
    

    UPDATE

    Some time later I realized that the for loop (3rd line) in the previous weighted edgelist example is unnecessary. You can replace it with the following vectorized operation:

    mat[el[,1:2]] <- el[,3]
    
    0 讨论(0)
  • 2020-12-07 18:40

    Another possibility with the qdapTools package:

    library(qdapTools)
    
    el[rep(seq_len(nrow(el)), el[,'c']), c('a', 'b')] %>%
        {split(.[,'b'], .[,'a'])} %>%
        mtabulate()
    
    ##   1 2 3 4 5
    ## 1 0 0 0 0 3
    ## 2 0 0 0 1 0
    ## 3 0 0 2 0 0
    ## 4 0 1 0 0 0
    ## 5 1 0 0 0 0
    
    0 讨论(0)
  • 2020-12-07 18:51

    The post on my website you mention in the question (https://sites.google.com/site/daishizuka/toolkits/sna/sna_data) uses the igraph package, so make sure that is loaded.

    Moreover, I recently realized that igraph provides a much easier way to create a weighted adjacency matrix from edgelists, using graph.data.frame(). I've updated this on my site, but here is a simple example:

    library(igraph)
    el=matrix(c('a','b','c','d','a','d','a','b','c','d'),ncol=2,byrow=TRUE) #a sample edgelist
    g=graph.data.frame(el)
    get.adjacency(g,sparse=FALSE)
    

    That should do it. The sparse=FALSE argument tells it to show the 0s in the adjacency matrix. If you really don't want to use igraph, I think this is a clunky way to do it:

    el=matrix(c('a','b','c','d','a','d','a','b','c','d'),ncol=2,byrow=TRUE) #a sample edgelist
    lab=names(table(el)) #extract the existing node IDs
    mat=matrix(0,nrow=length(lab),ncol=length(lab),dimnames=list(lab,lab)) #create a matrix of 0s with the node IDs as rows and columns
    for (i in 1:nrow(el)) mat[el[i,1],el[i,2]]=mat[el[i,1],el[i,2]]+1 #for each row in the edgelist, find the appropriate cell in the empty matrix and add 1.
    
    0 讨论(0)
  • 2020-12-07 18:53

    Start with your data frame edges and use igraph to obtain adjacency matrix:

    head(edges)

      node1 node2
    1   551   548
    2   510   512
    3   548   553
    4   505   504
    5   510   512
    6   552   543
    
    library(igraph)
    as.matrix(get.adjacency(graph.data.frame(edges)))
    
        551 510 548 505 552 512 543 553 504 547 542
    551   0   0   2   0   0   0   0   0   0   0   0
    510   0   0   0   0   0   2   0   0   0   0   0
    548   0   0   0   0   0   0   2   1   0   0   1
    505   0   0   0   0   0   0   0   0   1   0   0
    552   0   0   0   0   0   0   1   0   0   0   0
    512   0   2   0   0   0   0   0   0   0   0   0
    543   0   0   1   0   0   0   0   0   0   1   0
    553   0   0   0   0   0   0   0   0   0   0   0
    504   0   0   0   0   0   0   0   0   0   0   0
    547   0   0   0   0   0   0   0   0   0   0   0
    542   0   0   0   0   0   0   0   0   0   0   0
    
    0 讨论(0)
提交回复
热议问题