While I\'m familiar with concurrent programming concepts such as mutexes and semaphores, I have never understood how they are implemented at the assembly language level.
I like to think of thread synchronization as a bottom up where processor and operating system provide construct that are primitive to more sophisticated
At the processor level you have CAS and LL/SC which allow you to perform a test and store in a single atomic operation ... you also have other processor constructs that allow you to disable and enable interrupt (however they are considered dangerous ... under certain circumstances you have no other option but to use them)
operating system provides the ability to context switch between tasks which can happen every time a thread has used its time slice ... or it can happen due to otgher reasons (I will come to that)
then there are higher level constructs like mutexes which uses these primitive mechanisms provided by processor (think spinning mutex) ... which will continuously wait for the condition to become true and checks for that condition atomically
then these spinning mutex can use the functionality provided by OS (context switch and system calls like yield which relinquishes the control to another thread) and gives us mutexes
these constructs are further utilized by higher level constructs like conditional variables (which can keep track of how many threads are waiting for the mutex and which thread to allow first when the mutex becomes available)
These constructs than can be further used to provide more sophisticated synchronization constructs ... example : semaphores etc
The x86 architecture, has long had an instruction called xchg
which will exchange the contents of a register with a memory location. xchg has always been atomic.
There has also always been a lock
prefix that could be applied to any a single instruction to make that instruction atomic. Before there were multi processor systems, all this really did was to prevent an interrupt from being delivered in the middle of a locked instruction. (xchg was implicitly locked).
This article has some sample code using xchg to implement a spinlock http://en.wikipedia.org/wiki/Spinlock
When multi CPU and later multi Core systems began to be built, more sophisticated systems were needed to insure that lock and xchg would synchronize all of the memory subsystems, including l1 cache on all of the processors. About this time, new research into locking and lockless algorithms showed that atomic CompareAndSet was a more flexible primitive to have, so more modern CPUs have that as an instruction.
Addendum: In comments andras supplied a "dusty old" list of instructions which allow the lock
prefix. http://pdos.csail.mit.edu/6.828/2007/readings/i386/LOCK.htm
xchg
on x86/x64. So in a strict sense, a CAS is not needed for crafting a spinlock - but some kind of atomicity is still required. In this case, it makes use of an atomic operation that can write a register to memory and return the previous contents of that memory slot in a single step. (To clarify a bit more: the lock prefix asserts the #LOCK signal that ensures that the current CPU has exclusive access to the memory. On todays CPUs it is not necessarily carried out this way, but the effect is the same. By using xchg
we make sure that we will not get preempted somewhere between reading and writing, since instructions will not be interrupted half-way. So if we had an imaginary lock mov reg0, mem / lock mov mem, reg1 pair (which we don't), that would not quite be the same - it could be preempted just between the two movs.)pause
instructions that serve as hints that you're spinning - so that the core you are running on can do something useful during this