How do I calculate a point on a circle’s circumference?

后端 未结 4 1322
悲&欢浪女
悲&欢浪女 2020-11-22 15:02

How can the following function be implemented in various languages?

Calculate the (x,y) point on the circumference of a circle, given input values of:

相关标签:
4条回答
  • 2020-11-22 15:20

    Implemented in JavaScript (ES6):

    /**
        * Calculate x and y in circle's circumference
        * @param {Object} input - The input parameters
        * @param {number} input.radius - The circle's radius
        * @param {number} input.angle - The angle in degrees
        * @param {number} input.cx - The circle's origin x
        * @param {number} input.cy - The circle's origin y
        * @returns {Array[number,number]} The calculated x and y
    */
    function pointsOnCircle({ radius, angle, cx, cy }){
    
        angle = angle * ( Math.PI / 180 ); // Convert from Degrees to Radians
        const x = cx + radius * Math.sin(angle);
        const y = cy + radius * Math.cos(angle);
        return [ x, y ];
    
    }
    

    Usage:

    const [ x, y ] = pointsOnCircle({ radius: 100, angle: 180, cx: 150, cy: 150 });
    console.log( x, y );
    

    Codepen

    /**
     * Calculate x and y in circle's circumference
     * @param {Object} input - The input parameters
     * @param {number} input.radius - The circle's radius
     * @param {number} input.angle - The angle in degrees
     * @param {number} input.cx - The circle's origin x
     * @param {number} input.cy - The circle's origin y
     * @returns {Array[number,number]} The calculated x and y
     */
    function pointsOnCircle({ radius, angle, cx, cy }){
      angle = angle * ( Math.PI / 180 ); // Convert from Degrees to Radians
      const x = cx + radius * Math.sin(angle);
      const y = cy + radius * Math.cos(angle);
      return [ x, y ];
    }
    
    const canvas = document.querySelector("canvas");
    const ctx = canvas.getContext("2d");
    
    function draw( x, y ){
    
      ctx.clearRect( 0, 0, canvas.width, canvas.height );
      ctx.beginPath();
      ctx.strokeStyle = "orange";
      ctx.arc( 100, 100, 80, 0, 2 * Math.PI);
      ctx.lineWidth = 3;
      ctx.stroke();
      ctx.closePath();
    
      ctx.beginPath();
      ctx.fillStyle = "indigo";
      ctx.arc( x, y, 6, 0, 2 * Math.PI);
      ctx.fill();
      ctx.closePath();
      
    }
    
    let angle = 0;  // In degrees
    setInterval(function(){
    
      const [ x, y ] = pointsOnCircle({ radius: 80, angle: angle++, cx: 100, cy: 100 });
      console.log( x, y );
      draw( x, y );
      document.querySelector("#degrees").innerHTML = angle + "°";
      document.querySelector("#points").textContent = x.toFixed() + "," + y.toFixed();
    
    }, 100 );
    <p>Degrees: <span id="degrees">0</span></p>
    <p>Points on Circle (x,y): <span id="points">0,0</span></p>
    <canvas width="200" height="200" style="border: 1px solid"></canvas>

    0 讨论(0)
  • 2020-11-22 15:21

    The parametric equation for a circle is

    x = cx + r * cos(a)
    y = cy + r * sin(a)
    

    Where r is the radius, cx,cy the origin, and a the angle.

    That's pretty easy to adapt into any language with basic trig functions. Note that most languages will use radians for the angle in trig functions, so rather than cycling through 0..360 degrees, you're cycling through 0..2PI radians.

    0 讨论(0)
  • 2020-11-22 15:21

    Here is my implementation in C#:

        public static PointF PointOnCircle(float radius, float angleInDegrees, PointF origin)
        {
            // Convert from degrees to radians via multiplication by PI/180        
            float x = (float)(radius * Math.Cos(angleInDegrees * Math.PI / 180F)) + origin.X;
            float y = (float)(radius * Math.Sin(angleInDegrees * Math.PI / 180F)) + origin.Y;
    
            return new PointF(x, y);
        }
    
    0 讨论(0)
  • 2020-11-22 15:33

    Who needs trig when you have complex numbers:

    #include <complex.h>
    #include <math.h>
    
    #define PI      3.14159265358979323846
    
    typedef complex double Point;
    
    Point point_on_circle ( double radius, double angle_in_degrees, Point centre )
    {
        return centre + radius * cexp ( PI * I * ( angle_in_degrees  / 180.0 ) );
    }
    
    0 讨论(0)
提交回复
热议问题