How to add an extra column to a NumPy array

前端 未结 17 1916
一个人的身影
一个人的身影 2020-11-22 14:37

Let’s say I have a NumPy array, a:

a = np.array([
    [1, 2, 3],
    [2, 3, 4]
    ])

And I would like to add a column of ze

相关标签:
17条回答
  • There is a function specifically for this. It is called numpy.pad

    a = np.array([[1,2,3], [2,3,4]])
    b = np.pad(a, ((0, 0), (0, 1)), mode='constant', constant_values=0)
    print b
    >>> array([[1, 2, 3, 0],
               [2, 3, 4, 0]])
    

    Here is what it says in the docstring:

    Pads an array.
    
    Parameters
    ----------
    array : array_like of rank N
        Input array
    pad_width : {sequence, array_like, int}
        Number of values padded to the edges of each axis.
        ((before_1, after_1), ... (before_N, after_N)) unique pad widths
        for each axis.
        ((before, after),) yields same before and after pad for each axis.
        (pad,) or int is a shortcut for before = after = pad width for all
        axes.
    mode : str or function
        One of the following string values or a user supplied function.
    
        'constant'
            Pads with a constant value.
        'edge'
            Pads with the edge values of array.
        'linear_ramp'
            Pads with the linear ramp between end_value and the
            array edge value.
        'maximum'
            Pads with the maximum value of all or part of the
            vector along each axis.
        'mean'
            Pads with the mean value of all or part of the
            vector along each axis.
        'median'
            Pads with the median value of all or part of the
            vector along each axis.
        'minimum'
            Pads with the minimum value of all or part of the
            vector along each axis.
        'reflect'
            Pads with the reflection of the vector mirrored on
            the first and last values of the vector along each
            axis.
        'symmetric'
            Pads with the reflection of the vector mirrored
            along the edge of the array.
        'wrap'
            Pads with the wrap of the vector along the axis.
            The first values are used to pad the end and the
            end values are used to pad the beginning.
        <function>
            Padding function, see Notes.
    stat_length : sequence or int, optional
        Used in 'maximum', 'mean', 'median', and 'minimum'.  Number of
        values at edge of each axis used to calculate the statistic value.
    
        ((before_1, after_1), ... (before_N, after_N)) unique statistic
        lengths for each axis.
    
        ((before, after),) yields same before and after statistic lengths
        for each axis.
    
        (stat_length,) or int is a shortcut for before = after = statistic
        length for all axes.
    
        Default is ``None``, to use the entire axis.
    constant_values : sequence or int, optional
        Used in 'constant'.  The values to set the padded values for each
        axis.
    
        ((before_1, after_1), ... (before_N, after_N)) unique pad constants
        for each axis.
    
        ((before, after),) yields same before and after constants for each
        axis.
    
        (constant,) or int is a shortcut for before = after = constant for
        all axes.
    
        Default is 0.
    end_values : sequence or int, optional
        Used in 'linear_ramp'.  The values used for the ending value of the
        linear_ramp and that will form the edge of the padded array.
    
        ((before_1, after_1), ... (before_N, after_N)) unique end values
        for each axis.
    
        ((before, after),) yields same before and after end values for each
        axis.
    
        (constant,) or int is a shortcut for before = after = end value for
        all axes.
    
        Default is 0.
    reflect_type : {'even', 'odd'}, optional
        Used in 'reflect', and 'symmetric'.  The 'even' style is the
        default with an unaltered reflection around the edge value.  For
        the 'odd' style, the extented part of the array is created by
        subtracting the reflected values from two times the edge value.
    
    Returns
    -------
    pad : ndarray
        Padded array of rank equal to `array` with shape increased
        according to `pad_width`.
    
    Notes
    -----
    .. versionadded:: 1.7.0
    
    For an array with rank greater than 1, some of the padding of later
    axes is calculated from padding of previous axes.  This is easiest to
    think about with a rank 2 array where the corners of the padded array
    are calculated by using padded values from the first axis.
    
    The padding function, if used, should return a rank 1 array equal in
    length to the vector argument with padded values replaced. It has the
    following signature::
    
        padding_func(vector, iaxis_pad_width, iaxis, kwargs)
    
    where
    
        vector : ndarray
            A rank 1 array already padded with zeros.  Padded values are
            vector[:pad_tuple[0]] and vector[-pad_tuple[1]:].
        iaxis_pad_width : tuple
            A 2-tuple of ints, iaxis_pad_width[0] represents the number of
            values padded at the beginning of vector where
            iaxis_pad_width[1] represents the number of values padded at
            the end of vector.
        iaxis : int
            The axis currently being calculated.
        kwargs : dict
            Any keyword arguments the function requires.
    
    Examples
    --------
    >>> a = [1, 2, 3, 4, 5]
    >>> np.pad(a, (2,3), 'constant', constant_values=(4, 6))
    array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])
    
    >>> np.pad(a, (2, 3), 'edge')
    array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])
    
    >>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
    array([ 5,  3,  1,  2,  3,  4,  5,  2, -1, -4])
    
    >>> np.pad(a, (2,), 'maximum')
    array([5, 5, 1, 2, 3, 4, 5, 5, 5])
    
    >>> np.pad(a, (2,), 'mean')
    array([3, 3, 1, 2, 3, 4, 5, 3, 3])
    
    >>> np.pad(a, (2,), 'median')
    array([3, 3, 1, 2, 3, 4, 5, 3, 3])
    
    >>> a = [[1, 2], [3, 4]]
    >>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
    array([[1, 1, 1, 2, 1, 1, 1],
           [1, 1, 1, 2, 1, 1, 1],
           [1, 1, 1, 2, 1, 1, 1],
           [1, 1, 1, 2, 1, 1, 1],
           [3, 3, 3, 4, 3, 3, 3],
           [1, 1, 1, 2, 1, 1, 1],
           [1, 1, 1, 2, 1, 1, 1]])
    
    >>> a = [1, 2, 3, 4, 5]
    >>> np.pad(a, (2, 3), 'reflect')
    array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])
    
    >>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
    array([-1,  0,  1,  2,  3,  4,  5,  6,  7,  8])
    
    >>> np.pad(a, (2, 3), 'symmetric')
    array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])
    
    >>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
    array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])
    
    >>> np.pad(a, (2, 3), 'wrap')
    array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])
    
    >>> def pad_with(vector, pad_width, iaxis, kwargs):
    ...     pad_value = kwargs.get('padder', 10)
    ...     vector[:pad_width[0]] = pad_value
    ...     vector[-pad_width[1]:] = pad_value
    ...     return vector
    >>> a = np.arange(6)
    >>> a = a.reshape((2, 3))
    >>> np.pad(a, 2, pad_with)
    array([[10, 10, 10, 10, 10, 10, 10],
           [10, 10, 10, 10, 10, 10, 10],
           [10, 10,  0,  1,  2, 10, 10],
           [10, 10,  3,  4,  5, 10, 10],
           [10, 10, 10, 10, 10, 10, 10],
           [10, 10, 10, 10, 10, 10, 10]])
    >>> np.pad(a, 2, pad_with, padder=100)
    array([[100, 100, 100, 100, 100, 100, 100],
           [100, 100, 100, 100, 100, 100, 100],
           [100, 100,   0,   1,   2, 100, 100],
           [100, 100,   3,   4,   5, 100, 100],
           [100, 100, 100, 100, 100, 100, 100],
           [100, 100, 100, 100, 100, 100, 100]])
    
    0 讨论(0)
  • 2020-11-22 15:19

    For me, the next way looks pretty intuitive and simple.

    zeros = np.zeros((2,1)) #2 is a number of rows in your array.   
    b = np.hstack((a, zeros))
    
    0 讨论(0)
  • 2020-11-22 15:19

    In my case, I had to add a column of ones to a NumPy array

    X = array([ 6.1101, 5.5277, ... ])
    X.shape => (97,)
    X = np.concatenate((np.ones((m,1), dtype=np.int), X.reshape(m,1)), axis=1)
    

    After X.shape => (97, 2)

    array([[ 1. , 6.1101],
           [ 1. , 5.5277],
    ...
    
    0 讨论(0)
  • 2020-11-22 15:24

    Use numpy.append:

    >>> a = np.array([[1,2,3],[2,3,4]])
    >>> a
    array([[1, 2, 3],
           [2, 3, 4]])
    
    >>> z = np.zeros((2,1), dtype=int64)
    >>> z
    array([[0],
           [0]])
    
    >>> np.append(a, z, axis=1)
    array([[1, 2, 3, 0],
           [2, 3, 4, 0]])
    
    0 讨论(0)
  • 2020-11-22 15:24

    I think:

    np.column_stack((a, zeros(shape(a)[0])))
    

    is more elegant.

    0 讨论(0)
  • 2020-11-22 15:25

    np.r_[ ... ] and np.c_[ ... ] are useful alternatives to vstack and hstack, with square brackets [] instead of round ().
    A couple of examples:

    : import numpy as np
    : N = 3
    : A = np.eye(N)
    
    : np.c_[ A, np.ones(N) ]              # add a column
    array([[ 1.,  0.,  0.,  1.],
           [ 0.,  1.,  0.,  1.],
           [ 0.,  0.,  1.,  1.]])
    
    : np.c_[ np.ones(N), A, np.ones(N) ]  # or two
    array([[ 1.,  1.,  0.,  0.,  1.],
           [ 1.,  0.,  1.,  0.,  1.],
           [ 1.,  0.,  0.,  1.,  1.]])
    
    : np.r_[ A, [A[1]] ]              # add a row
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.],
           [ 0.,  1.,  0.]])
    : # not np.r_[ A, A[1] ]
    
    : np.r_[ A[0], 1, 2, 3, A[1] ]    # mix vecs and scalars
      array([ 1.,  0.,  0.,  1.,  2.,  3.,  0.,  1.,  0.])
    
    : np.r_[ A[0], [1, 2, 3], A[1] ]  # lists
      array([ 1.,  0.,  0.,  1.,  2.,  3.,  0.,  1.,  0.])
    
    : np.r_[ A[0], (1, 2, 3), A[1] ]  # tuples
      array([ 1.,  0.,  0.,  1.,  2.,  3.,  0.,  1.,  0.])
    
    : np.r_[ A[0], 1:4, A[1] ]        # same, 1:4 == arange(1,4) == 1,2,3
      array([ 1.,  0.,  0.,  1.,  2.,  3.,  0.,  1.,  0.])
    

    (The reason for square brackets [] instead of round () is that Python expands e.g. 1:4 in square -- the wonders of overloading.)

    0 讨论(0)
提交回复
热议问题