How to add an extra column to a NumPy array

前端 未结 17 1914
一个人的身影
一个人的身影 2020-11-22 14:37

Let’s say I have a NumPy array, a:

a = np.array([
    [1, 2, 3],
    [2, 3, 4]
    ])

And I would like to add a column of ze

相关标签:
17条回答
  • 2020-11-22 15:09

    np.insert also serves the purpose.

    matA = np.array([[1,2,3], 
                     [2,3,4]])
    idx = 3
    new_col = np.array([0, 0])
    np.insert(matA, idx, new_col, axis=1)
    
    array([[1, 2, 3, 0],
           [2, 3, 4, 0]])
    

    It inserts values, here new_col, before a given index, here idx along one axis. In other words, the newly inserted values will occupy the idx column and move what were originally there at and after idx backward.

    0 讨论(0)
  • 2020-11-22 15:11

    Assuming M is a (100,3) ndarray and y is a (100,) ndarray append can be used as follows:

    M=numpy.append(M,y[:,None],1)
    

    The trick is to use

    y[:, None]
    

    This converts y to a (100, 1) 2D array.

    M.shape
    

    now gives

    (100, 4)
    
    0 讨论(0)
  • 2020-11-22 15:12

    I was also interested in this question and compared the speed of

    numpy.c_[a, a]
    numpy.stack([a, a]).T
    numpy.vstack([a, a]).T
    numpy.ascontiguousarray(numpy.stack([a, a]).T)               
    numpy.ascontiguousarray(numpy.vstack([a, a]).T)
    numpy.column_stack([a, a])
    numpy.concatenate([a[:,None], a[:,None]], axis=1)
    numpy.concatenate([a[None], a[None]], axis=0).T
    

    which all do the same thing for any input vector a. Timings for growing a:

    Note that all non-contiguous variants (in particular stack/vstack) are eventually faster than all contiguous variants. column_stack (for its clarity and speed) appears to be a good option if you require contiguity.


    Code to reproduce the plot:

    import numpy
    import perfplot
    
    perfplot.save(
        "out.png",
        setup=lambda n: numpy.random.rand(n),
        kernels=[
            lambda a: numpy.c_[a, a],
            lambda a: numpy.ascontiguousarray(numpy.stack([a, a]).T),
            lambda a: numpy.ascontiguousarray(numpy.vstack([a, a]).T),
            lambda a: numpy.column_stack([a, a]),
            lambda a: numpy.concatenate([a[:, None], a[:, None]], axis=1),
            lambda a: numpy.ascontiguousarray(
                numpy.concatenate([a[None], a[None]], axis=0).T
            ),
            lambda a: numpy.stack([a, a]).T,
            lambda a: numpy.vstack([a, a]).T,
            lambda a: numpy.concatenate([a[None], a[None]], axis=0).T,
        ],
        labels=[
            "c_",
            "ascont(stack)",
            "ascont(vstack)",
            "column_stack",
            "concat",
            "ascont(concat)",
            "stack (non-cont)",
            "vstack (non-cont)",
            "concat (non-cont)",
        ],
        n_range=[2 ** k for k in range(20)],
        xlabel="len(a)",
        logx=True,
        logy=True,
    )
    
    0 讨论(0)
  • 2020-11-22 15:13

    I liked this:

    new_column = np.zeros((len(a), 1))
    b = np.block([a, new_column])
    
    0 讨论(0)
  • 2020-11-22 15:14

    Add an extra column to a numpy array:

    Numpy's np.append method takes three parameters, the first two are 2D numpy arrays and the 3rd is an axis parameter instructing along which axis to append:

    import numpy as np  
    x = np.array([[1,2,3], [4,5,6]]) 
    print("Original x:") 
    print(x) 
    
    y = np.array([[1], [1]]) 
    print("Original y:") 
    print(y) 
    
    print("x appended to y on axis of 1:") 
    print(np.append(x, y, axis=1)) 
    

    Prints:

    Original x:
    [[1 2 3]
     [4 5 6]]
    Original y:
    [[1]
     [1]]
    x appended to y on axis of 1:
    [[1 2 3 1]
     [4 5 6 1]]
    
    0 讨论(0)
  • 2020-11-22 15:14

    A bit late to the party, but nobody posted this answer yet, so for the sake of completeness: you can do this with list comprehensions, on a plain Python array:

    source = a.tolist()
    result = [row + [0] for row in source]
    b = np.array(result)
    
    0 讨论(0)
提交回复
热议问题