Pandas unstack problems: ValueError: Index contains duplicate entries, cannot reshape

前端 未结 3 1335
南笙
南笙 2020-12-07 16:15

I am trying to unstack a multi-index with pandas and I am keep getting:

ValueError: Index contains duplicate entries, cannot reshape

Given

相关标签:
3条回答
  • 2020-12-07 16:54

    I had such problem. In my case problem was in data - my column 'information' contained 1 unique value and it caused error

    UPDATE: to correct work 'pivot' pairs (id_user,information) cannot have duplicates

    It works:

    df2 = pd.DataFrame({'id_user':[1,2,3,4,4,5,5], 
    'information':['phon','phon','phone','phone1','phone','phone1','phone'], 
    'value': [1, '01.01.00', '01.02.00', 2, '01.03.00', 3, '01.04.00']})
    df2.pivot(index='id_user', columns='information', values='value')
    

    it doesn't work:

    df2 = pd.DataFrame({'id_user':[1,2,3,4,4,5,5], 
    'information':['phone','phone','phone','phone','phone','phone','phone'], 
    'value': [1, '01.01.00', '01.02.00', 2, '01.03.00', 3, '01.04.00']})
    df2.pivot(index='id_user', columns='information', values='value')
    

    source: https://stackoverflow.com/a/37021196/6088984

    0 讨论(0)
  • 2020-12-07 16:56

    Here's an example DataFrame which show this, it has duplicate values with the same index. The question is, do you want to aggregate these or keep them as multiple rows?

    In [11]: df
    Out[11]:
       0  1  2      3
    0  1  2  a  16.86
    1  1  2  a  17.18
    2  1  4  a  17.03
    3  2  5  b  17.28
    
    In [12]: df.pivot_table(values=3, index=[0, 1], columns=2, aggfunc='mean')  # desired?
    Out[12]:
    2        a      b
    0 1
    1 2  17.02    NaN
      4  17.03    NaN
    2 5    NaN  17.28
    
    In [13]: df1 = df.set_index([0, 1, 2])
    
    In [14]: df1
    Out[14]:
               3
    0 1 2
    1 2 a  16.86
        a  17.18
      4 a  17.03
    2 5 b  17.28
    
    In [15]: df1.unstack(2)
    ValueError: Index contains duplicate entries, cannot reshape
    

    One solution is to reset_index (and get back to df) and use pivot_table.

    In [16]: df1.reset_index().pivot_table(values=3, index=[0, 1], columns=2, aggfunc='mean')
    Out[16]:
    2        a      b
    0 1
    1 2  17.02    NaN
      4  17.03    NaN
    2 5    NaN  17.28
    

    Another option (if you don't want to aggregate) is to append a dummy level, unstack it, then drop the dummy level...

    0 讨论(0)
  • 2020-12-07 17:10

    There's a far more simpler solution to tackle this.

    The reason why you get ValueError: Index contains duplicate entries, cannot reshape is because, once you unstack "Location", then the remaining index columns "id" and "date" combinations are no longer unique.

    You can avoid this by retaining the default index column (row #) and while setting the index using "id", "date" and "location", add it in "append" mode instead of the default overwrite mode.

    So use,

    e.set_index(['id', 'date', 'location'], append=True)
    

    Once this is done, your index columns will still have the default index along with the set indexes. And unstack will work.

    Let me know how it works out.

    0 讨论(0)
提交回复
热议问题