I am trying to do a perspective correction of a tilted rectangle ( a credit card), which is tilted in all the 4 directions. I could find its four corners and the respective
Here is the way you need to follow...
For easiness I have resized your image to smaller size,
Q1=manual calculation; Q2=manual calculation; Q3=manual calculation; Q4=manual calculation;
// compute the size of the card by keeping aspect ratio. double ratio=1.6; double cardH=sqrt((Q3.x-Q2.x)*(Q3.x-Q2.x)+(Q3.y-Q2.y)*(Q3.y-Q2.y)); //Or you can give your own height double cardW=ratio*cardH; Rect R(Q1.x,Q1.y,cardW,cardH);
You can refer below C++ code,
//Compute quad point for edge
Point Q1=Point2f(90,11);
Point Q2=Point2f(596,135);
Point Q3=Point2f(632,452);
Point Q4=Point2f(90,513);
// compute the size of the card by keeping aspect ratio.
double ratio=1.6;
double cardH=sqrt((Q3.x-Q2.x)*(Q3.x-Q2.x)+(Q3.y-Q2.y)*(Q3.y-Q2.y));//Or you can give your own height
double cardW=ratio*cardH;
Rect R(Q1.x,Q1.y,cardW,cardH);
Point R1=Point2f(R.x,R.y);
Point R2=Point2f(R.x+R.width,R.y);
Point R3=Point2f(Point2f(R.x+R.width,R.y+R.height));
Point R4=Point2f(Point2f(R.x,R.y+R.height));
std::vector<Point2f> quad_pts;
std::vector<Point2f> squre_pts;
quad_pts.push_back(Q1);
quad_pts.push_back(Q2);
quad_pts.push_back(Q3);
quad_pts.push_back(Q4);
squre_pts.push_back(R1);
squre_pts.push_back(R2);
squre_pts.push_back(R3);
squre_pts.push_back(R4);
Mat transmtx = getPerspectiveTransform(quad_pts,squre_pts);
int offsetSize=150;
Mat transformed = Mat::zeros(R.height+offsetSize, R.width+offsetSize, CV_8UC3);
warpPerspective(src, transformed, transmtx, transformed.size());
//rectangle(src, R, Scalar(0,255,0),1,8,0);
line(src,Q1,Q2, Scalar(0,0,255),1,CV_AA,0);
line(src,Q2,Q3, Scalar(0,0,255),1,CV_AA,0);
line(src,Q3,Q4, Scalar(0,0,255),1,CV_AA,0);
line(src,Q4,Q1, Scalar(0,0,255),1,CV_AA,0);
imshow("quadrilateral", transformed);
imshow("src",src);
waitKey();
I'm writing the answer provided by @Haris in python.
import cv2
import math
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('test.jpg')
rows,cols,ch = img.shape
pts1 = np.float32([[360,50],[2122,470],[2264, 1616],[328,1820]])
ratio=1.6
cardH=math.sqrt((pts1[2][0]-pts1[1][0])*(pts1[2][0]-pts1[1][0])+(pts1[2][1]-pts1[1][1])*(pts1[2][1]-pts1[1][1]))
cardW=ratio*cardH;
pts2 = np.float32([[pts1[0][0],pts1[0][1]], [pts1[0][0]+cardW, pts1[0][1]], [pts1[0][0]+cardW, pts1[0][1]+cardH], [pts1[0][0], pts1[0][1]+cardH]])
M = cv2.getPerspectiveTransform(pts1,pts2)
offsetSize=500
transformed = np.zeros((int(cardW+offsetSize), int(cardH+offsetSize)), dtype=np.uint8);
dst = cv2.warpPerspective(img, M, transformed.shape)
plt.subplot(121),plt.imshow(img),plt.title('Input')
plt.subplot(122),plt.imshow(dst),plt.title('Output')
plt.show()
I have a better solution which is much easy:
The red rectangle on original image and the corners points of the rectangle are source points
We use cv2.getPerspectiveTransform(src, dst)
that takes source points and destination points as arguments and returns the transformation matrix which transforms any image to destination image as show in the diagram
We use this transformation matrix in cv2.warpPerspective()
- As you can see results are better. You get a very nice bird view of the image
import cv2
import matplotlib.pyplot as plt
import numpy as np
def unwarp(img, src, dst, testing):
h, w = img.shape[:2]
# use cv2.getPerspectiveTransform() to get M, the transform matrix, and Minv, the inverse
M = cv2.getPerspectiveTransform(src, dst)
# use cv2.warpPerspective() to warp your image to a top-down view
warped = cv2.warpPerspective(img, M, (w, h), flags=cv2.INTER_LINEAR)
if testing:
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
f.subplots_adjust(hspace=.2, wspace=.05)
ax1.imshow(img)
x = [src[0][0], src[2][0], src[3][0], src[1][0], src[0][0]]
y = [src[0][1], src[2][1], src[3][1], src[1][1], src[0][1]]
ax1.plot(x, y, color='red', alpha=0.4, linewidth=3, solid_capstyle='round', zorder=2)
ax1.set_ylim([h, 0])
ax1.set_xlim([0, w])
ax1.set_title('Original Image', fontsize=30)
ax2.imshow(cv2.flip(warped, 1))
ax2.set_title('Unwarped Image', fontsize=30)
plt.show()
else:
return warped, M
im = cv2.imread("so.JPG")
w, h = im.shape[0], im.shape[1]
# We will first manually select the source points
# we will select the destination point which will map the source points in
# original image to destination points in unwarped image
src = np.float32([(20, 1),
(540, 130),
(20, 520),
(570, 450)])
dst = np.float32([(600, 0),
(0, 0),
(600, 531),
(0, 531)])
unwarp(im, src, dst, True)
cv2.imshow("so", im)
cv2.waitKey(0)[![enter image description here][1]][1]
cv2.destroyAllWindows()