pandas.factorize on an entire data frame

后端 未结 3 1265
青春惊慌失措
青春惊慌失措 2020-12-07 15:13

pandas.factorize encodes input values as an enumerated type or categorical variable.

But how can I easily and efficiently convert many columns of a data frame? What

相关标签:
3条回答
  • 2020-12-07 15:35

    I also found this answer quite helpful: https://stackoverflow.com/a/20051631/4643212

    I was trying to take values from an existing column in a Pandas DataFrame (a list of IP addresses named 'SrcIP') and map them to numerical values in a new column (named 'ID' in this example).

    Solution:

    df['ID'] = pd.factorize(df.SrcIP)[0]
    

    Result:

            SrcIP | ID    
    192.168.1.112 |  0  
    192.168.1.112 |  0  
    192.168.4.118 |  1 
    192.168.1.112 |  0
    192.168.4.118 |  1
    192.168.5.122 |  2
    192.168.5.122 |  2
    ...
    
    0 讨论(0)
  • 2020-12-07 15:47

    I would like to redirect my answer: https://stackoverflow.com/a/32011969/1694714

    Old answer

    Another readable solution for this problem, when you want to keep the categories consistent across the the resulting DataFrame is using replace:

    def categorise(df):
        categories = {k: v for v, k in enumerate(df.stack().unique())}
        return df.replace(categories)
    

    Performs slightly worse than the example by @jezrael, but easier to read. Also, it might escalate better for bigger datasets. I can do some proper testing if anyone is interested.

    0 讨论(0)
  • 2020-12-07 15:59

    You can use apply if you need to factorize each column separately:

    df = pd.DataFrame({'A':['type1','type2','type2'],
                       'B':['type1','type2','type3'],
                       'C':['type1','type3','type3']})
    
    print (df)
           A      B      C
    0  type1  type1  type1
    1  type2  type2  type3
    2  type2  type3  type3
    
    print (df.apply(lambda x: pd.factorize(x)[0]))
       A  B  C
    0  0  0  0
    1  1  1  1
    2  1  2  1
    

    If you need for the same string value the same numeric one:

    print (df.stack().rank(method='dense').unstack())
         A    B    C
    0  1.0  1.0  1.0
    1  2.0  2.0  3.0
    2  2.0  3.0  3.0
    

    If you need to apply the function only for some columns, use a subset:

    df[['B','C']] = df[['B','C']].stack().rank(method='dense').unstack()
    print (df)
           A    B    C
    0  type1  1.0  1.0
    1  type2  2.0  3.0
    2  type2  3.0  3.0
    

    Solution with factorize:

    stacked = df[['B','C']].stack()
    df[['B','C']] = pd.Series(stacked.factorize()[0], index=stacked.index).unstack()
    print (df)
           A  B  C
    0  type1  0  0
    1  type2  1  2
    2  type2  2  2
    

    Translate them back is possible via map by dict, where you need to remove duplicates by drop_duplicates:

    vals = df.stack().drop_duplicates().values
    b = [x for x in df.stack().drop_duplicates().rank(method='dense')]
    
    d1 = dict(zip(b, vals))
    print (d1)
    {1.0: 'type1', 2.0: 'type2', 3.0: 'type3'}
    
    df1 = df.stack().rank(method='dense').unstack()
    print (df1)
         A    B    C
    0  1.0  1.0  1.0
    1  2.0  2.0  3.0
    2  2.0  3.0  3.0
    
    print (df1.stack().map(d1).unstack())
           A      B      C
    0  type1  type1  type1
    1  type2  type2  type3
    2  type2  type3  type3
    
    0 讨论(0)
提交回复
热议问题