What is the best way to create a zero-filled pandas data frame of a given size?
I have used:
zero_data = np.zeros(shape=(len(data),len(feature_list)
If you already have a dataframe, this is the fastest way:
In [1]: columns = ["col{}".format(i) for i in range(10)]
In [2]: orig_df = pd.DataFrame(np.ones((10, 10)), columns=columns)
In [3]: %timeit d = pd.DataFrame(np.zeros_like(orig_df), index=orig_df.index, columns=orig_df.columns)
10000 loops, best of 3: 60.2 µs per loop
Compare to:
In [4]: %timeit d = pd.DataFrame(0, index = np.arange(10), columns=columns)
10000 loops, best of 3: 110 µs per loop
In [5]: temp = np.zeros((10, 10))
In [6]: %timeit d = pd.DataFrame(temp, columns=columns)
10000 loops, best of 3: 95.7 µs per loop
Assuming having a template DataFrame, which one would like to copy with zero values filled here...
If you have no NaNs in your data set, multiplying by zero can be significantly faster:
In [19]: columns = ["col{}".format(i) for i in xrange(3000)]
In [20]: indices = xrange(2000)
In [21]: orig_df = pd.DataFrame(42.0, index=indices, columns=columns)
In [22]: %timeit d = pd.DataFrame(np.zeros_like(orig_df), index=orig_df.index, columns=orig_df.columns)
100 loops, best of 3: 12.6 ms per loop
In [23]: %timeit d = orig_df * 0.0
100 loops, best of 3: 7.17 ms per loop
Improvement depends on DataFrame size, but never found it slower.
And just for the heck of it:
In [24]: %timeit d = orig_df * 0.0 + 1.0
100 loops, best of 3: 13.6 ms per loop
In [25]: %timeit d = pd.eval('orig_df * 0.0 + 1.0')
100 loops, best of 3: 8.36 ms per loop
But:
In [24]: %timeit d = orig_df.copy()
10 loops, best of 3: 24 ms per loop
EDIT!!!
Assuming you have a frame using float64, this will be the fastest by a huge margin! It is also able to generate any value by replacing 0.0 to the desired fill number.
In [23]: %timeit d = pd.eval('orig_df > 1.7976931348623157e+308 + 0.0')
100 loops, best of 3: 3.68 ms per loop
Depending on taste, one can externally define nan, and do a general solution, irrespective of the particular float type:
In [39]: nan = np.nan
In [40]: %timeit d = pd.eval('orig_df > nan + 0.0')
100 loops, best of 3: 4.39 ms per loop
It's best to do this with numpy in my opinion
import numpy as np
import pandas as pd
d = pd.DataFrame(np.zeros((N_rows, N_cols)))
Similar to @Shravan, but without the use of numpy:
height = 10
width = 20
df_0 = pd.DataFrame(0, index=range(height), columns=range(width))
Then you can do whatever you want with it:
post_instantiation_fcn = lambda x: str(x)
df_ready_for_whatever = df_0.applymap(post_instantiation_fcn)
You can try this:
d = pd.DataFrame(0, index=np.arange(len(data)), columns=feature_list)
If you would like the new data frame to have the same index and columns as an existing data frame, you can just multiply the existing data frame by zero:
df_zeros = df * 0