Haskell
Number of characters: 361 350 338 322
Fully obfuscated function:
m=map
f=toRational
a%w=m(\(b,v)->(b,a:v))w
p[]=[];p(a:w)=(a,w):a%p w
q[]=[];q(a:w)=[((a,b),v)|(b,v)<-p w]++a%q w
z(o,p)(a,w)(b,v)=[(a`o`b,'(':w++p:v++")")|b/=0]
y=m z(zip[(-),(/),(+),(*)]"-/+*")++m flip(take 2 y)
r w=do{((a,b),v)<-q w;o<-y;c<-o a b;c:r(c:v)}
c t=snd.minimum.m(\a->(abs(fst a-f t),a)).r.m(\a->(f a,show a))
Clear function:
-- | add an element on to the front of the remainder list
onRemainder :: a -> [(b,[a])] -> [(b,[a])]
a`onRemainder`w = map (\(b,as)->(b,a:as)) w
-- | all ways to pick one item from a list, returns item and remainder of list
pick :: [a] -> [(a,[a])]
pick [] = []
pick (a:as) = (a,as) : a `onRemainder` (pick as)
-- | all ways to pick two items from a list, returns items and remainder of list
pick2 :: [a] -> [((a,a),[a])]
pick2 [] = []
pick2 (a:as) = [((a,b),cs) | (b,cs) <- pick as] ++ a `onRemainder` (pick2 as)
-- | a value, and how it was computed
type Item = (Rational, String)
-- | a specification of a binary operation
type OpSpec = (Rational -> Rational -> Rational, String)
-- | a binary operation on Items
type Op = Item -> Item -> Maybe Item
-- | turn an OpSpec into a operation
-- applies the operator to the values, and builds up an expression string
-- in this context there is no point to doing +0, -0, *0, or /0
combine :: OpSpec -> Op
combine (op,os) (ar,as) (br,bs)
| br == 0 = Nothing
| otherwise = Just (ar`op`br,"("++as++os++bs++")")
-- | the operators we can use
ops :: [Op]
ops = map combine [ ((+),"+"), ((-), "-"), ((*), "*"), ((/), "/") ]
++ map (flip . combine) [((-), "-"), ((/), "/")]
-- | recursive reduction of a list of items to a list of all possible values
-- includes values that don't use all the items, includes multiple copies of
-- some results
reduce :: [Item] -> [Item]
reduce is = do
((a,b),js) <- pick2 is
op <- ops
c <- maybe [] (:[]) $ op a b
c : reduce (c : js)
-- | convert a list of real numbers to a list of items
items :: (Real a, Show a) => [a] -> [Item]
items = map (\a -> (toRational a, show a))
-- | return the first reduction of a list of real numbers closest to some target
countDown:: (Real a, Show a) => a -> [a] -> Item
countDown t is = snd $ minimum $ map dist $ reduce $ items is
where dist is = (abs . subtract t' . fst $ is, is)
t' = toRational t
Any notes on the algorithm/clever shortcuts it takes:
- In the golf'd version,
z
returns in the list monad, rather than Maybe
as ops
does.
- While the algorithm here is brute force, it operates in small, fixed, linear space due to Haskell's laziness. I coded the wonderful @keith-randall algorithm, but it ran in about the same time and took over 1.5G of memory in Haskell.
reduce
generates some answers multiple times, in order to easily include solutions with fewer terms.
- In the golf'd version,
y
is defined partially in terms of itself.
- Results are computed with
Rational
values. Golf'd code would be 17 characters shorter, and faster if computed with Double
.
- Notice how the function
onRemainder
factors out the structural similarity between pick
and pick2
.
Driver for golf'd version:
main = do
print $ c 203 [50, 100, 4, 2, 2, 4]
print $ c 465 [25, 4, 9, 2, 3, 10]
print $ c 241 [9, 8, 10, 5, 9, 7]
print $ c 824 [3, 7, 6, 2, 1, 7]
Run, with timing (still under one minute per result):
[1076] : time ./Countdown
(203 % 1,"(((((2*4)-2)/100)+4)*50)")
(465 % 1,"(((((10-4)*25)+2)*3)+9)")
(241 % 1,"(((((10*9)/5)+8)*9)+7)")
(826 % 1,"(((((3*7)-1)*6)-2)*7)")
real 2m24.213s
user 2m22.063s
sys 0m 0.913s