I have the following problem, I want to create my own colormap (red-mix-violet-mix-blue) that maps to values between -2 and +2 and want to use it to color points in my plot.
This seems to work for me.
def make_Ramp( ramp_colors ):
from colour import Color
from matplotlib.colors import LinearSegmentedColormap
color_ramp = LinearSegmentedColormap.from_list( 'my_list', [ Color( c1 ).rgb for c1 in ramp_colors ] )
plt.figure( figsize = (15,3))
plt.imshow( [list(np.arange(0, len( ramp_colors ) , 0.1)) ] , interpolation='nearest', origin='lower', cmap= color_ramp )
plt.xticks([])
plt.yticks([])
return color_ramp
custom_ramp = make_Ramp( ['#754a28','#893584','#68ad45','#0080a5' ] )
If you want to automate the creating of a custom divergent colormap commonly used for surface plots, this module combined with @unutbu method worked well for me.
def diverge_map(high=(0.565, 0.392, 0.173), low=(0.094, 0.310, 0.635)):
'''
low and high are colors that will be used for the two
ends of the spectrum. they can be either color strings
or rgb color tuples
'''
c = mcolors.ColorConverter().to_rgb
if isinstance(low, basestring): low = c(low)
if isinstance(high, basestring): high = c(high)
return make_colormap([low, c('white'), 0.5, c('white'), high])
The high and low values can be either string color names or rgb tuples. This is the result using the surface plot demo:
Since the methods used in other answers seems quite complicated for such easy task, here is a new answer:
Instead of a ListedColormap
, which produces a discrete colormap, you may use a LinearSegmentedColormap
. This can easily be created from a list using the from_list
method.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
x,y,c = zip(*np.random.rand(30,3)*4-2)
norm=plt.Normalize(-2,2)
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["red","violet","blue"])
plt.scatter(x,y,c=c, cmap=cmap, norm=norm)
plt.colorbar()
plt.show()
More generally, if you have a list of values (e.g. [-2., -1, 2]
) and corresponding colors, (e.g. ["red","violet","blue"]
), such that the n
th value should correspond to the n
th color, you can normalize the values and supply them as tuples to the from_list
method.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
x,y,c = zip(*np.random.rand(30,3)*4-2)
cvals = [-2., -1, 2]
colors = ["red","violet","blue"]
norm=plt.Normalize(min(cvals),max(cvals))
tuples = list(zip(map(norm,cvals), colors))
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", tuples)
plt.scatter(x,y,c=c, cmap=cmap, norm=norm)
plt.colorbar()
plt.show()
There is an illustrative example of how to create custom colormaps here.
The docstring is essential for understanding the meaning of
cdict
. Once you get that under your belt, you might use a cdict
like this:
cdict = {'red': ((0.0, 1.0, 1.0),
(0.1, 1.0, 1.0), # red
(0.4, 1.0, 1.0), # violet
(1.0, 0.0, 0.0)), # blue
'green': ((0.0, 0.0, 0.0),
(1.0, 0.0, 0.0)),
'blue': ((0.0, 0.0, 0.0),
(0.1, 0.0, 0.0), # red
(0.4, 1.0, 1.0), # violet
(1.0, 1.0, 0.0)) # blue
}
Although the cdict
format gives you a lot of flexibility, I find for simple
gradients its format is rather unintuitive. Here is a utility function to help
generate simple LinearSegmentedColormaps:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
def make_colormap(seq):
"""Return a LinearSegmentedColormap
seq: a sequence of floats and RGB-tuples. The floats should be increasing
and in the interval (0,1).
"""
seq = [(None,) * 3, 0.0] + list(seq) + [1.0, (None,) * 3]
cdict = {'red': [], 'green': [], 'blue': []}
for i, item in enumerate(seq):
if isinstance(item, float):
r1, g1, b1 = seq[i - 1]
r2, g2, b2 = seq[i + 1]
cdict['red'].append([item, r1, r2])
cdict['green'].append([item, g1, g2])
cdict['blue'].append([item, b1, b2])
return mcolors.LinearSegmentedColormap('CustomMap', cdict)
c = mcolors.ColorConverter().to_rgb
rvb = make_colormap(
[c('red'), c('violet'), 0.33, c('violet'), c('blue'), 0.66, c('blue')])
N = 1000
array_dg = np.random.uniform(0, 10, size=(N, 2))
colors = np.random.uniform(-2, 2, size=(N,))
plt.scatter(array_dg[:, 0], array_dg[:, 1], c=colors, cmap=rvb)
plt.colorbar()
plt.show()
By the way, the for-loop
for i in range(0, len(array_dg)):
plt.plot(array_dg[i], markers.next(),alpha=alpha[i], c=colors.next())
plots one point for every call to plt.plot
. This will work for a small number of points, but will become extremely slow for many points. plt.plot
can only draw in one color, but plt.scatter
can assign a different color to each dot. Thus, plt.scatter
is the way to go.