Given a vector of scores and a vector of actual class labels, how do you calculate a single-number AUC metric for a binary classifier in the R language or in simple English?
Combining code from ISL 9.6.3 ROC Curves, along with @J. Won.'s answer to this question and a few more places, the following plots the ROC curve and prints the AUC in the bottom right on the plot.
Below probs
is a numeric vector of predicted probabilities for binary classification and test$label
contains the true labels of the test data.
require(ROCR)
require(pROC)
rocplot <- function(pred, truth, ...) {
predob = prediction(pred, truth)
perf = performance(predob, "tpr", "fpr")
plot(perf, ...)
area <- auc(truth, pred)
area <- format(round(area, 4), nsmall = 4)
text(x=0.8, y=0.1, labels = paste("AUC =", area))
# the reference x=y line
segments(x0=0, y0=0, x1=1, y1=1, col="gray", lty=2)
}
rocplot(probs, test$label, col="blue")
This gives a plot like this:
Along the lines of erik's response, you should also be able to calculate the ROC directly by comparing all possible pairs of values from pos.scores and neg.scores:
score.pairs <- merge(pos.scores, neg.scores)
names(score.pairs) <- c("pos.score", "neg.score")
sum(score.pairs$pos.score > score.pairs$neg.score) / nrow(score.pairs)
Certainly less efficient than the sample approach or the pROC::auc, but more stable than the former and requiring less installation than the latter.
Related: when I tried this it gave similar results to pROC's value, but not exactly the same (off by 0.02 or so); the result was closer to the sample approach with very high N. If anyone has ideas why that might be I'd be interested.
I usually use the function ROC from the DiagnosisMed package. I like the graph it produces. AUC is returned along with it's confidence interval and it is also mentioned on the graph.
ROC(classLabels,scores,Full=TRUE)
Without any additional packages:
true_Y = c(1,1,1,1,2,1,2,1,2,2)
probs = c(1,0.999,0.999,0.973,0.568,0.421,0.382,0.377,0.146,0.11)
getROC_AUC = function(probs, true_Y){
probsSort = sort(probs, decreasing = TRUE, index.return = TRUE)
val = unlist(probsSort$x)
idx = unlist(probsSort$ix)
roc_y = true_Y[idx];
stack_x = cumsum(roc_y == 2)/sum(roc_y == 2)
stack_y = cumsum(roc_y == 1)/sum(roc_y == 1)
auc = sum((stack_x[2:length(roc_y)]-stack_x[1:length(roc_y)-1])*stack_y[2:length(roc_y)])
return(list(stack_x=stack_x, stack_y=stack_y, auc=auc))
}
aList = getROC_AUC(probs, true_Y)
stack_x = unlist(aList$stack_x)
stack_y = unlist(aList$stack_y)
auc = unlist(aList$auc)
plot(stack_x, stack_y, type = "l", col = "blue", xlab = "False Positive Rate", ylab = "True Positive Rate", main = "ROC")
axis(1, seq(0.0,1.0,0.1))
axis(2, seq(0.0,1.0,0.1))
abline(h=seq(0.0,1.0,0.1), v=seq(0.0,1.0,0.1), col="gray", lty=3)
legend(0.7, 0.3, sprintf("%3.3f",auc), lty=c(1,1), lwd=c(2.5,2.5), col="blue", title = "AUC")