How to extract text from a PDF file?

前端 未结 24 2031
孤城傲影
孤城傲影 2020-11-22 14:05

I\'m trying to extract the text included in this PDF file using Python.

I\'m using the PyPDF2 module, and have the following script:

imp         


        
相关标签:
24条回答
  • 2020-11-22 14:14

    For extracting Text from PDF use below code

    import PyPDF2
    pdfFileObj = open('mypdf.pdf', 'rb')
    
    pdfReader = PyPDF2.PdfFileReader(pdfFileObj)
    
    print(pdfReader.numPages)
    
    pageObj = pdfReader.getPage(0)
    
    a = pageObj.extractText()
    
    print(a)
    
    0 讨论(0)
  • 2020-11-22 14:15

    You can use PDFtoText https://github.com/jalan/pdftotext

    PDF to text keeps text format indentation, doesn't matter if you have tables.

    0 讨论(0)
  • 2020-11-22 14:20

    If wanting to extract text from a table, I've found tabula to be easily implemented, accurate, and fast:

    to get a pandas dataframe:

    import tabula
    
    df = tabula.read_pdf('your.pdf')
    
    df
    

    By default, it ignores page content outside of the table. So far, I've only tested on a single-page, single-table file, but there are kwargs to accommodate multiple pages and/or multiple tables.

    install via:

    pip install tabula-py
    # or
    conda install -c conda-forge tabula-py 
    

    In terms of straight-up text extraction see: https://stackoverflow.com/a/63190886/9249533

    0 讨论(0)
  • 2020-11-22 14:20

    I am adding code to accomplish this: It is working fine for me:

    # This works in python 3
    # required python packages
    # tabula-py==1.0.0
    # PyPDF2==1.26.0
    # Pillow==4.0.0
    # pdfminer.six==20170720
    
    import os
    import shutil
    import warnings
    from io import StringIO
    
    import requests
    import tabula
    from PIL import Image
    from PyPDF2 import PdfFileWriter, PdfFileReader
    from pdfminer.converter import TextConverter
    from pdfminer.layout import LAParams
    from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
    from pdfminer.pdfpage import PDFPage
    
    warnings.filterwarnings("ignore")
    
    
    def download_file(url):
        local_filename = url.split('/')[-1]
        local_filename = local_filename.replace("%20", "_")
        r = requests.get(url, stream=True)
        print(r)
        with open(local_filename, 'wb') as f:
            shutil.copyfileobj(r.raw, f)
    
        return local_filename
    
    
    class PDFExtractor():
        def __init__(self, url):
            self.url = url
    
        # Downloading File in local
        def break_pdf(self, filename, start_page=-1, end_page=-1):
            pdf_reader = PdfFileReader(open(filename, "rb"))
            # Reading each pdf one by one
            total_pages = pdf_reader.numPages
            if start_page == -1:
                start_page = 0
            elif start_page < 1 or start_page > total_pages:
                return "Start Page Selection Is Wrong"
            else:
                start_page = start_page - 1
    
            if end_page == -1:
                end_page = total_pages
            elif end_page < 1 or end_page > total_pages - 1:
                return "End Page Selection Is Wrong"
            else:
                end_page = end_page
    
            for i in range(start_page, end_page):
                output = PdfFileWriter()
                output.addPage(pdf_reader.getPage(i))
                with open(str(i + 1) + "_" + filename, "wb") as outputStream:
                    output.write(outputStream)
    
        def extract_text_algo_1(self, file):
            pdf_reader = PdfFileReader(open(file, 'rb'))
            # creating a page object
            pageObj = pdf_reader.getPage(0)
    
            # extracting extract_text from page
            text = pageObj.extractText()
            text = text.replace("\n", "").replace("\t", "")
            return text
    
        def extract_text_algo_2(self, file):
            pdfResourceManager = PDFResourceManager()
            retstr = StringIO()
            la_params = LAParams()
            device = TextConverter(pdfResourceManager, retstr, codec='utf-8', laparams=la_params)
            fp = open(file, 'rb')
            interpreter = PDFPageInterpreter(pdfResourceManager, device)
            password = ""
            max_pages = 0
            caching = True
            page_num = set()
    
            for page in PDFPage.get_pages(fp, page_num, maxpages=max_pages, password=password, caching=caching,
                                          check_extractable=True):
                interpreter.process_page(page)
    
            text = retstr.getvalue()
            text = text.replace("\t", "").replace("\n", "")
    
            fp.close()
            device.close()
            retstr.close()
            return text
    
        def extract_text(self, file):
            text1 = self.extract_text_algo_1(file)
            text2 = self.extract_text_algo_2(file)
    
            if len(text2) > len(str(text1)):
                return text2
            else:
                return text1
    
        def extarct_table(self, file):
    
            # Read pdf into DataFrame
            try:
                df = tabula.read_pdf(file, output_format="csv")
            except:
                print("Error Reading Table")
                return
    
            print("\nPrinting Table Content: \n", df)
            print("\nDone Printing Table Content\n")
    
        def tiff_header_for_CCITT(self, width, height, img_size, CCITT_group=4):
            tiff_header_struct = '<' + '2s' + 'h' + 'l' + 'h' + 'hhll' * 8 + 'h'
            return struct.pack(tiff_header_struct,
                               b'II',  # Byte order indication: Little indian
                               42,  # Version number (always 42)
                               8,  # Offset to first IFD
                               8,  # Number of tags in IFD
                               256, 4, 1, width,  # ImageWidth, LONG, 1, width
                               257, 4, 1, height,  # ImageLength, LONG, 1, lenght
                               258, 3, 1, 1,  # BitsPerSample, SHORT, 1, 1
                               259, 3, 1, CCITT_group,  # Compression, SHORT, 1, 4 = CCITT Group 4 fax encoding
                               262, 3, 1, 0,  # Threshholding, SHORT, 1, 0 = WhiteIsZero
                               273, 4, 1, struct.calcsize(tiff_header_struct),  # StripOffsets, LONG, 1, len of header
                               278, 4, 1, height,  # RowsPerStrip, LONG, 1, lenght
                               279, 4, 1, img_size,  # StripByteCounts, LONG, 1, size of extract_image
                               0  # last IFD
                               )
    
        def extract_image(self, filename):
            number = 1
            pdf_reader = PdfFileReader(open(filename, 'rb'))
    
            for i in range(0, pdf_reader.numPages):
    
                page = pdf_reader.getPage(i)
    
                try:
                    xObject = page['/Resources']['/XObject'].getObject()
                except:
                    print("No XObject Found")
                    return
    
                for obj in xObject:
    
                    try:
    
                        if xObject[obj]['/Subtype'] == '/Image':
                            size = (xObject[obj]['/Width'], xObject[obj]['/Height'])
                            data = xObject[obj]._data
                            if xObject[obj]['/ColorSpace'] == '/DeviceRGB':
                                mode = "RGB"
                            else:
                                mode = "P"
    
                            image_name = filename.split(".")[0] + str(number)
    
                            print(xObject[obj]['/Filter'])
    
                            if xObject[obj]['/Filter'] == '/FlateDecode':
                                data = xObject[obj].getData()
                                img = Image.frombytes(mode, size, data)
                                img.save(image_name + "_Flate.png")
                                # save_to_s3(imagename + "_Flate.png")
                                print("Image_Saved")
    
                                number += 1
                            elif xObject[obj]['/Filter'] == '/DCTDecode':
                                img = open(image_name + "_DCT.jpg", "wb")
                                img.write(data)
                                # save_to_s3(imagename + "_DCT.jpg")
                                img.close()
                                number += 1
                            elif xObject[obj]['/Filter'] == '/JPXDecode':
                                img = open(image_name + "_JPX.jp2", "wb")
                                img.write(data)
                                # save_to_s3(imagename + "_JPX.jp2")
                                img.close()
                                number += 1
                            elif xObject[obj]['/Filter'] == '/CCITTFaxDecode':
                                if xObject[obj]['/DecodeParms']['/K'] == -1:
                                    CCITT_group = 4
                                else:
                                    CCITT_group = 3
                                width = xObject[obj]['/Width']
                                height = xObject[obj]['/Height']
                                data = xObject[obj]._data  # sorry, getData() does not work for CCITTFaxDecode
                                img_size = len(data)
                                tiff_header = self.tiff_header_for_CCITT(width, height, img_size, CCITT_group)
                                img_name = image_name + '_CCITT.tiff'
                                with open(img_name, 'wb') as img_file:
                                    img_file.write(tiff_header + data)
    
                                # save_to_s3(img_name)
                                number += 1
                    except:
                        continue
    
            return number
    
        def read_pages(self, start_page=-1, end_page=-1):
    
            # Downloading file locally
            downloaded_file = download_file(self.url)
            print(downloaded_file)
    
            # breaking PDF into number of pages in diff pdf files
            self.break_pdf(downloaded_file, start_page, end_page)
    
            # creating a pdf reader object
            pdf_reader = PdfFileReader(open(downloaded_file, 'rb'))
    
            # Reading each pdf one by one
            total_pages = pdf_reader.numPages
    
            if start_page == -1:
                start_page = 0
            elif start_page < 1 or start_page > total_pages:
                return "Start Page Selection Is Wrong"
            else:
                start_page = start_page - 1
    
            if end_page == -1:
                end_page = total_pages
            elif end_page < 1 or end_page > total_pages - 1:
                return "End Page Selection Is Wrong"
            else:
                end_page = end_page
    
            for i in range(start_page, end_page):
                # creating a page based filename
                file = str(i + 1) + "_" + downloaded_file
    
                print("\nStarting to Read Page: ", i + 1, "\n -----------===-------------")
    
                file_text = self.extract_text(file)
                print(file_text)
                self.extract_image(file)
    
                self.extarct_table(file)
                os.remove(file)
                print("Stopped Reading Page: ", i + 1, "\n -----------===-------------")
    
            os.remove(downloaded_file)
    
    
    # I have tested on these 3 pdf files
    # url = "http://s3.amazonaws.com/NLP_Project/Original_Documents/Healthcare-January-2017.pdf"
    url = "http://s3.amazonaws.com/NLP_Project/Original_Documents/Sample_Test.pdf"
    # url = "http://s3.amazonaws.com/NLP_Project/Original_Documents/Sazerac_FS_2017_06_30%20Annual.pdf"
    # creating the instance of class
    pdf_extractor = PDFExtractor(url)
    
    # Getting desired data out
    pdf_extractor.read_pages(15, 23)
    
    0 讨论(0)
  • I've try many Python PDF converters, and I like to update this review. Tika is one of the best. But PyMuPDF is a good news from @ehsaneha user.

    I did a code to compare them in: https://github.com/erfelipe/PDFtextExtraction I hope to help you.

    Tika-Python is a Python binding to the Apache Tika™ REST services allowing Tika to be called natively in the Python community.

    from tika import parser
    
    raw = parser.from_file("///Users/Documents/Textos/Texto1.pdf")
    raw = str(raw)
    
    safe_text = raw.encode('utf-8', errors='ignore')
    
    safe_text = str(safe_text).replace("\n", "").replace("\\", "")
    print('--- safe text ---' )
    print( safe_text )
    
    0 讨论(0)
  • 2020-11-22 14:21

    How to extract text from a PDF file?

    The first thing to understand is the PDF format. It has a public specification written in English, see ISO 32000-2:2017 and read the more than 700 pages of PDF 1.7 specification. You certainly at least need to read the wikipedia page about PDF

    Once you understood the details of the PDF format, extracting text is more or less easy (but what about text appearing in figures or images; its figure 1)? Don't expect writing a perfect software text extractor alone in a few weeks....

    On Linux, you might also use pdf2text which you could popen from your Python code.

    In general, extracting text from a PDF file is an ill defined problem. For a human reader some text could be made (as a figure) from different dots, or a photo, etc...

    The Google search engine is capable of extracting text from PDF, but is rumored to need more than half a billion lines of source code. Do you have the necessary resources (in man power, in budget) to develop a competitor?

    A possibility might be to print the PDF to some virtual printer (e.g. using GhostScript or Firefox), then to use OCR techniques to extract text.

    I would recommend instead to work on the data representation which has generated that PDF file, for example on the original LaTeX code (or Lout code) or on OOXML code.

    In all cases, you need to budget at least several person years of software development.

    0 讨论(0)
提交回复
热议问题