I have two dataframes,
df1,
Names
one two three
Sri is a good player
Ravi is a mentor
Kumar is a cricketer
df2,
Using sets
s1 = df1.Names.dropna()
s1.loc[:] = [set(x.lower().split()) for x in s1.values.tolist()]
a1 = s1.values
s2 = df2['values'].dropna()
s2.loc[:] = [set(x.replace(' ', '').lower().split(',')) for x in s2.values.tolist()]
a2 = s2.values
i = np.column_stack([a1 >= a2[:, None], [True] * len(a2)]).argmax(1)
df2.assign(Names=pd.Series(
np.append(df1.Names.values, np.nan)[i], s2.index
))
values Names
0 sri Sri is a good player
1 NaN NaN
2 sri, is Sri is a good player
3 kumar,cricketer Kumar is a cricketer
import pandas as pd
names = [
'one two three',
'Sri is a good player',
'Ravi is a mentor',
'Kumar is a cricketer'
]
values = [
'sri',
'NaN',
'sri, is',
'kumar,cricketer',
]
names = pd.Series(names)
values = pd.DataFrame(values, columns=['values'])
def foo(words):
names_copy = names.copy()
for word in words.split(','):
names_copy = names_copy[names_copy.str.contains(word, case=False)]
return names_copy.values
values['names'] = values['values'].map(foo)
values
values names
0 sri [Sri is a good player]
1 NaN []
2 sri, is [Sri is a good player]
3 kumar,cricketer [Kumar is a cricketer]