I\'m interested in tries and DAWGs (direct acyclic word graph) and I\'ve been reading a lot about them but I don\'t understand what should the output trie or DAWG file look
from collections import defaultdict
_trie = lambda: defaultdict(_trie)
trie = _trie()
for s in ["cat", "bat", "rat", "cam"]:
curr = trie
for c in s:
curr = curr[c]
curr.setdefault("_end")
def word_exist(trie, word):
curr = trie
for w in word:
if w not in curr:
return False
curr = curr[w]
return '_end' in curr
print(word_exist(trie, 'cam'))
Trie Data Structure can be used to store data in O(L)
where L is the length of the string so for inserting N strings time complexity would be O(NL)
the string can be searched in O(L)
only same goes for deletion.
Can be clone from https://github.com/Parikshit22/pytrie.git
class Node:
def __init__(self):
self.children = [None]*26
self.isend = False
class trie:
def __init__(self,):
self.__root = Node()
def __len__(self,):
return len(self.search_byprefix(''))
def __str__(self):
ll = self.search_byprefix('')
string = ''
for i in ll:
string+=i
string+='\n'
return string
def chartoint(self,character):
return ord(character)-ord('a')
def remove(self,string):
ptr = self.__root
length = len(string)
for idx in range(length):
i = self.chartoint(string[idx])
if ptr.children[i] is not None:
ptr = ptr.children[i]
else:
raise ValueError("Keyword doesn't exist in trie")
if ptr.isend is not True:
raise ValueError("Keyword doesn't exist in trie")
ptr.isend = False
return
def insert(self,string):
ptr = self.__root
length = len(string)
for idx in range(length):
i = self.chartoint(string[idx])
if ptr.children[i] is not None:
ptr = ptr.children[i]
else:
ptr.children[i] = Node()
ptr = ptr.children[i]
ptr.isend = True
def search(self,string):
ptr = self.__root
length = len(string)
for idx in range(length):
i = self.chartoint(string[idx])
if ptr.children[i] is not None:
ptr = ptr.children[i]
else:
return False
if ptr.isend is not True:
return False
return True
def __getall(self,ptr,key,key_list):
if ptr is None:
key_list.append(key)
return
if ptr.isend==True:
key_list.append(key)
for i in range(26):
if ptr.children[i] is not None:
self.__getall(ptr.children[i],key+chr(ord('a')+i),key_list)
def search_byprefix(self,key):
ptr = self.__root
key_list = []
length = len(key)
for idx in range(length):
i = self.chartoint(key[idx])
if ptr.children[i] is not None:
ptr = ptr.children[i]
else:
return None
self.__getall(ptr,key,key_list)
return key_list
t = trie()
t.insert("shubham")
t.insert("shubhi")
t.insert("minhaj")
t.insert("parikshit")
t.insert("pari")
t.insert("shubh")
t.insert("minakshi")
print(t.search("minhaj"))
print(t.search("shubhk"))
print(t.search_byprefix('m'))
print(len(t))
print(t.remove("minhaj"))
print(t)
True
False
['minakshi', 'minhaj']
7
minakshi
minhajsir
pari
parikshit
shubh
shubham
shubhi
If you want a TRIE implemented as a Python class, here is something I wrote after reading about them:
class Trie:
def __init__(self):
self.__final = False
self.__nodes = {}
def __repr__(self):
return 'Trie<len={}, final={}>'.format(len(self), self.__final)
def __getstate__(self):
return self.__final, self.__nodes
def __setstate__(self, state):
self.__final, self.__nodes = state
def __len__(self):
return len(self.__nodes)
def __bool__(self):
return self.__final
def __contains__(self, array):
try:
return self[array]
except KeyError:
return False
def __iter__(self):
yield self
for node in self.__nodes.values():
yield from node
def __getitem__(self, array):
return self.__get(array, False)
def create(self, array):
self.__get(array, True).__final = True
def read(self):
yield from self.__read([])
def update(self, array):
self[array].__final = True
def delete(self, array):
self[array].__final = False
def prune(self):
for key, value in tuple(self.__nodes.items()):
if not value.prune():
del self.__nodes[key]
if not len(self):
self.delete([])
return self
def __get(self, array, create):
if array:
head, *tail = array
if create and head not in self.__nodes:
self.__nodes[head] = Trie()
return self.__nodes[head].__get(tail, create)
return self
def __read(self, name):
if self.__final:
yield name
for key, value in self.__nodes.items():
yield from value.__read(name + [key])
This version is using recursion
import pprint
from collections import deque
pp = pprint.PrettyPrinter(indent=4)
inp = raw_input("Enter a sentence to show as trie\n")
words = inp.split(" ")
trie = {}
def trie_recursion(trie_ds, word):
try:
letter = word.popleft()
out = trie_recursion(trie_ds.get(letter, {}), word)
except IndexError:
# End of the word
return {}
# Dont update if letter already present
if not trie_ds.has_key(letter):
trie_ds[letter] = out
return trie_ds
for word in words:
# Go through each word
trie = trie_recursion(trie, deque(word))
pprint.pprint(trie)
Output:
Coool
class Trie:
head = {}
def add(self,word):
cur = self.head
for ch in word:
if ch not in cur:
cur[ch] = {}
cur = cur[ch]
cur['*'] = True
def search(self,word):
cur = self.head
for ch in word:
if ch not in cur:
return False
cur = cur[ch]
if '*' in cur:
return True
else:
return False
def printf(self):
print (self.head)
dictionary = Trie()
dictionary.add("hi")
#dictionary.add("hello")
#dictionary.add("eye")
#dictionary.add("hey")
print(dictionary.search("hi"))
print(dictionary.search("hello"))
print(dictionary.search("hel"))
print(dictionary.search("he"))
dictionary.printf()
Out
True
False
False
False
{'h': {'i': {'*': True}}}
There's no "should"; it's up to you. Various implementations will have different performance characteristics, take various amounts of time to implement, understand, and get right. This is typical for software development as a whole, in my opinion.
I would probably first try having a global list of all trie nodes so far created, and representing the child-pointers in each node as a list of indices into the global list. Having a dictionary just to represent the child linking feels too heavy-weight, to me.