I am having a Zipped file containing multiple text files. I want to read each of the file and build a List of RDD containining the content of each files.
val
Here's a working version of @Atais solution (which needs enhancement by closing the streams) :
implicit class ZipSparkContext(val sc: SparkContext) extends AnyVal {
def readFile(path: String,
minPartitions: Int = sc.defaultMinPartitions): RDD[String] = {
if (path.toLowerCase.contains("zip")) {
sc.binaryFiles(path, minPartitions)
.flatMap {
case (zipFilePath, zipContent) ⇒
val zipInputStream = new ZipInputStream(zipContent.open())
Stream.continually(zipInputStream.getNextEntry)
.takeWhile(_ != null)
.map { _ ⇒
scala.io.Source.fromInputStream(zipInputStream, "UTF-8").getLines.mkString("\n")
} #::: { zipInputStream.close; Stream.empty[String] }
}
} else {
sc.textFile(path, minPartitions)
}
}
}
Then all you have to do is the following to read a zip file :
sc.readFile(path)
If you are reading binary files use sc.binaryFiles
. This will return an RDD of tuples containing the file name and a PortableDataStream
. You can feed the latter into a ZipInputStream
.
I have written all the necessary theory in other answer, that you might want to refer to: https://stackoverflow.com/a/45958182/1549135
I have followed the advice given by @Herman and used ZipInputStream
. This gave me this solution, which returns RDD[String]
of the zip content.
import java.io.{BufferedReader, InputStreamReader}
import java.util.zip.ZipInputStream
import org.apache.spark.SparkContext
import org.apache.spark.input.PortableDataStream
import org.apache.spark.rdd.RDD
implicit class ZipSparkContext(val sc: SparkContext) extends AnyVal {
def readFile(path: String,
minPartitions: Int = sc.defaultMinPartitions): RDD[String] = {
if (path.endsWith(".zip")) {
sc.binaryFiles(path, minPartitions)
.flatMap { case (name: String, content: PortableDataStream) =>
val zis = new ZipInputStream(content.open)
Stream.continually(zis.getNextEntry)
.takeWhile {
case null => zis.close(); false
case _ => true
}
.flatMap { _ =>
val br = new BufferedReader(new InputStreamReader(zis))
Stream.continually(br.readLine()).takeWhile(_ != null)
}
}
} else {
sc.textFile(path, minPartitions)
}
}
}
simply use it by importing the implicit class and call the readFile method on SparkContext:
import com.github.atais.spark.Implicits.ZipSparkContext
sc.readFile(path)
This filters only the first line. can anyone share your insights. I am trying to read a CSV file which is zipped and create JavaRDD for further processing.
JavaPairRDD<String, PortableDataStream> zipData =
sc.binaryFiles("hdfs://temp.zip");
JavaRDD<Record> newRDDRecord = zipData.flatMap(
new FlatMapFunction<Tuple2<String, PortableDataStream>, Record>(){
public Iterator<Record> call(Tuple2<String,PortableDataStream> content) throws Exception {
List<Record> records = new ArrayList<Record>();
ZipInputStream zin = new ZipInputStream(content._2.open());
ZipEntry zipEntry;
while ((zipEntry = zin.getNextEntry()) != null) {
count++;
if (!zipEntry.isDirectory()) {
Record sd;
String line;
InputStreamReader streamReader = new InputStreamReader(zin);
BufferedReader bufferedReader = new BufferedReader(streamReader);
line = bufferedReader.readLine();
String[] records= new CSVParser().parseLineMulti(line);
sd = new Record(TimeBuilder.convertStringToTimestamp(records[0]),
getDefaultValue(records[1]),
getDefaultValue(records[22]));
records.add(sd);
}
}
return records.iterator();
}
});
Here is another working solution which gives out file name which can be later split and used to create separate schemas from it.
implicit class ZipSparkContext(val sc: SparkContext) extends AnyVal {
def readFile(path: String,
minPartitions: Int = sc.defaultMinPartitions): RDD[String] = {
if (path.toLowerCase.contains("zip")) {
sc.binaryFiles(path, minPartitions)
.flatMap {
case (zipFilePath, zipContent) ⇒
val zipInputStream = new ZipInputStream(zipContent.open())
Stream.continually(zipInputStream.getNextEntry)
.takeWhile(_ != null)
.map { x ⇒
val filename1 = x.getName
scala.io.Source.fromInputStream(zipInputStream, "UTF-8").getLines.mkString(s"~${filename1}\n")+s"~${filename1}"
} #::: { zipInputStream.close; Stream.empty[String] }
}
} else {
sc.textFile(path, minPartitions)
}
}
}
full code is here
https://github.com/kali786516/Spark2StructuredStreaming/blob/master/src/main/scala/com/dataframe/extraDFExamples/SparkReadZipFiles.scala