I\'ve got a strange situation.
I have a 2D Numpy array, x:
x = np.random.random_integers(0,5,(20,8))
And I have 2 indexers--one w
import numpy as np
x = np.random.random_integers(0,5,(4,4))
x
array([[5, 3, 3, 2],
[4, 3, 0, 0],
[1, 4, 5, 3],
[0, 4, 3, 4]])
# This indexes the elements 1,1 and 2,2 and 3,3
indexes = (np.array([1,2,3]),np.array([1,2,3]))
x[indexes]
# returns array([3, 5, 4])
Notice that numpy has very different rules depending on what kind of indexes you use. So indexing several elements should be by a tuple
of np.ndarray
(see indexing manual).
So you need only to convert your list
to np.ndarray
and it should work as expected.
np.ix_
using indexing or boolean arrays/masksindexing-arrays
A. Selection
We can use np.ix_ to get a tuple of indexing arrays that are broadcastable against each other to result in a higher-dimensional combinations of indices. So, when that tuple is used for indexing into the input array, would give us the same higher-dimensional array. Hence, to make a selection based on two 1D
indexing arrays, it would be -
x_indexed = x[np.ix_(row_indices,col_indices)]
B. Assignment
We can use the same notation for assigning scalar or a broadcastable array into those indexed positions. Hence, the following works for assignments -
x[np.ix_(row_indices,col_indices)] = # scalar or broadcastable array
masks
We can also use boolean arrays/masks with np.ix_
, similar to how indexing arrays are used. This can be used again to select a block off the input array and also for assignments into it.
A. Selection
Thus, with row_mask
and col_mask
boolean arrays as the masks for row and column selections respectively, we can use the following for selections -
x[np.ix_(row_mask,col_mask)]
B. Assignment
And the following works for assignments -
x[np.ix_(row_mask,col_mask)] = # scalar or broadcastable array
1. Using np.ix_
with indexing-arrays
Input array and indexing arrays -
In [221]: x
Out[221]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, 92, 46, 67, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, 76, 56, 72, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
In [222]: row_indices
Out[222]: [4, 2, 5, 4, 1]
In [223]: col_indices
Out[223]: [1, 2]
Tuple of indexing arrays with np.ix_
-
In [224]: np.ix_(row_indices,col_indices) # Broadcasting of indices
Out[224]:
(array([[4],
[2],
[5],
[4],
[1]]), array([[1, 2]]))
Make selections -
In [225]: x[np.ix_(row_indices,col_indices)]
Out[225]:
array([[76, 56],
[70, 47],
[46, 95],
[76, 56],
[92, 46]])
As suggested by OP, this is in effect same as performing old-school broadcasting with a 2D array version of row_indices
that has its elements/indices sent to axis=0
and thus creating a singleton dimension at axis=1
and thus allowing broadcasting with col_indices
. Thus, we would have an alternative solution like so -
In [227]: x[np.asarray(row_indices)[:,None],col_indices]
Out[227]:
array([[76, 56],
[70, 47],
[46, 95],
[76, 56],
[92, 46]])
As discussed earlier, for the assignments, we simply do so.
Row, col indexing arrays -
In [36]: row_indices = [1, 4]
In [37]: col_indices = [1, 3]
Make assignments with scalar -
In [38]: x[np.ix_(row_indices,col_indices)] = -1
In [39]: x
Out[39]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, -1, 46, -1, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, -1, 56, -1, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
Make assignments with 2D block(broadcastable array) -
In [40]: rand_arr = -np.arange(4).reshape(2,2)
In [41]: x[np.ix_(row_indices,col_indices)] = rand_arr
In [42]: x
Out[42]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, 0, 46, -1, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, -2, 56, -3, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
2. Using np.ix_
with masks
Input array -
In [19]: x
Out[19]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[88, 92, 46, 67, 44, 81, 17, 67],
[31, 70, 47, 90, 52, 15, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, 76, 56, 72, 43, 79, 53, 37],
[74, 46, 95, 27, 81, 97, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
Input row, col masks -
In [20]: row_mask = np.array([0,1,1,0,0,1,0],dtype=bool)
In [21]: col_mask = np.array([1,0,1,0,1,1,0,0],dtype=bool)
Make selections -
In [22]: x[np.ix_(row_mask,col_mask)]
Out[22]:
array([[88, 46, 44, 81],
[31, 47, 52, 15],
[74, 95, 81, 97]])
Make assignments with scalar -
In [23]: x[np.ix_(row_mask,col_mask)] = -1
In [24]: x
Out[24]:
array([[17, 39, 88, 14, 73, 58, 17, 78],
[-1, 92, -1, 67, -1, -1, 17, 67],
[-1, 70, -1, 90, -1, -1, 24, 22],
[19, 59, 98, 19, 52, 95, 88, 65],
[85, 76, 56, 72, 43, 79, 53, 37],
[-1, 46, -1, 27, -1, -1, 93, 69],
[49, 46, 12, 83, 15, 63, 20, 79]])
Make assignments with 2D block(broadcastable array) -
In [25]: rand_arr = -np.arange(12).reshape(3,4)
In [26]: x[np.ix_(row_mask,col_mask)] = rand_arr
In [27]: x
Out[27]:
array([[ 17, 39, 88, 14, 73, 58, 17, 78],
[ 0, 92, -1, 67, -2, -3, 17, 67],
[ -4, 70, -5, 90, -6, -7, 24, 22],
[ 19, 59, 98, 19, 52, 95, 88, 65],
[ 85, 76, 56, 72, 43, 79, 53, 37],
[ -8, 46, -9, 27, -10, -11, 93, 69],
[ 49, 46, 12, 83, 15, 63, 20, 79]])
What about:
x[row_indices][:,col_indices]
For example,
x = np.random.random_integers(0,5,(5,5))
## array([[4, 3, 2, 5, 0],
## [0, 3, 1, 4, 2],
## [4, 2, 0, 0, 3],
## [4, 5, 5, 5, 0],
## [1, 1, 5, 0, 2]])
row_indices = [4,2]
col_indices = [1,2]
x[row_indices][:,col_indices]
## array([[1, 5],
## [2, 0]])
I think you are trying to do one of the following (equlvalent) operations:
x_does_work = x[row_indices,:][:,col_indices]
x_does_work = x[:,col_indices][row_indices,:]
This will actually create a subset of x
with only the selected rows, then select the columns from that, or vice versa in the second case. The first case can be thought of as
x_does_work = (x[row_indices,:])[:,col_indices]