An interface is a collection of related methods, that only contains the signatures of those methods - not the actual implementation.
If a class implements an interface (class Car implements IDrivable
) it has to provide code for all signatures defined in the interface.
Basic example:
You have to classes Car and Bike. Both implement the interface IDrivable:
interface IDrivable
{
void accelerate();
void brake();
}
class Car implements IDrivable
{
void accelerate()
{ System.out.println("Vroom"); }
void brake()
{ System.out.println("Queeeeek");}
}
class Bike implements IDrivable
{
void accelerate()
{ System.out.println("Rattle, Rattle, ..."); }
void brake()
{ System.out.println("..."); }
}
Now let's assume you have a collection of objects, that are all "drivable" (their classes all implement IDrivable):
List<IDrivable> vehicleList = new ArrayList<IDrivable>();
list.add(new Car());
list.add(new Car());
list.add(new Bike());
list.add(new Car());
list.add(new Bike());
list.add(new Bike());
If you now want to loop over that collection, you can rely on the fact, that every object in that collection implements accelerate()
:
for(IDrivable vehicle: vehicleList)
{
vehicle.accelerate(); //this could be a bike or a car, or anything that implements IDrivable
}
By calling that interface method you are not programming to an implementation but to an interface - a contract that ensures that the call target implements a certain functionality.
The same behavior could be achieved using inheritance, but deriving from a common base class results in tight coupling which can be avoided using interfaces.