Mutate multiple / consecutive columns (with dplyr or base R)

前端 未结 3 1874
独厮守ぢ
独厮守ぢ 2020-12-06 11:33

I\'m trying to create \"waves\" of variables that represent repeated measures. Specifically, I\'m trying to create consecutive variables that represent the mean values for

相关标签:
3条回答
  • 2020-12-06 12:11

    Another dplyr solution which is a bit closer to syntax indicated by the OP and doesn't require recasting the data-frame.

    The 4 wave calculations do basically the same thing in slightly different but vectorized (i.e. rowSums and rowMeans) ways:

    df <- df %>% 
          mutate(wave_1 = rowSums(select(., num_range("X", 1:10)))/10,
                 wave_2 = rowSums(select(., c(11:20)))/10,
                 wave_3 = rowMeans(select(., X21:X30)),
                 wave_4 = rowMeans(.[, 31:40]))
    

    Edit: . can be used as placeholder for the current dataframe df (code was changed accordingly). Also wave_4 added to demonstrate it can be used like a dataframe.

    In case to operating function is not vectorized (that is, it can't be used on the whole dataframe such as rowSums), it is also possible to make use of the rowwise and do function using a non-vectorized functions (e.g. myfun)

    myfun <- function (x) {
      sum(x)/10
    }
    
    tmp=df %>%
      rowwise() %>%
      do(data.frame(., wave_1 = myfun(unlist(.)[1:10]))) %>%
      do(data.frame(., wave_2 = myfun(unlist(.)[11:20])))
    

    Note: . changes seems to change it's meaning, referring to the whole dataframe for mutate but only the current row for do.

    0 讨论(0)
  • 2020-12-06 12:14

    Another approach (and IMO the recommended approach) using dplyr would be to first reshape or melt your data into a tidy data format before summarizing the values from each wave.

    In detail, this process would involve:

    1. Reshape your data to long format (tidyr::gather)
    2. Identify which variables belong to each "wave"
    3. Summarize values for each wave
    4. Reshape your data back to wide format (tidyr::spread)

    In your example, this would look like the following:

    library(tidyverse)
    
    mat <- matrix(runif(1000, 1, 10), ncol = 100)
    df <- data.frame(mat)
    dim(df)
    
    df %>%
      dplyr::mutate(id = dplyr::row_number()) %>%
      # reshape to "tidy data" or long format
      tidyr::gather(varname, value, -id) %>%
      # identify which variables belong to which "wave"
      dplyr::mutate(varnum = as.integer(stringr::str_extract(varname, pattern = '\\d+')),
                    wave = floor((varnum-1)/10)+1) %>%
      # summarize your value for each wave
      dplyr::group_by(id, wave) %>%
      dplyr::summarise(avg = sum(value)/n()) %>%
      # reshape back to "wide" format
      tidyr::spread(wave, avg, sep='_') %>%
      dplyr::ungroup()
    

    With the following output:

    # A tibble: 10 x 11
          id wave_1 wave_2 wave_3 wave_4 wave_5 wave_6 wave_7 wave_8 wave_9 wave_10
       <int>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>
     1     1   6.24   4.49   5.85   5.43   5.98   6.04   4.83   6.92   5.43    5.52
     2     2   5.16   6.82   5.76   6.66   6.21   5.41   4.58   5.06   5.81    6.93
     3     3   7.23   6.28   5.40   5.70   5.13   6.27   5.55   5.84   6.74    5.94
     4     4   5.27   4.79   4.39   6.85   5.31   6.01   6.15   3.31   5.73    5.63
     5     5   6.48   5.16   5.20   4.71   5.87   4.44   6.40   5.00   5.90    3.78
     6     6   4.18   4.64   5.49   5.47   5.75   6.35   4.34   5.66   5.34    6.57
     7     7   4.97   4.09   6.17   5.78   5.87   6.47   4.96   4.39   5.99    5.35
     8     8   5.50   7.21   5.43   5.15   4.56   5.00   4.86   5.72   6.41    5.65
     9     9   5.27   5.71   5.23   5.44   5.12   5.40   5.38   6.05   5.41    5.30
    10    10   5.95   4.58   6.52   5.46   7.63   5.56   5.82   7.03   5.68    5.38
    

    This could be joined back to your original data to match the example you gave (which used mutate) as follows:

    df %>%
      dplyr::mutate(id = dplyr::row_number()) %>%
      tidyr::gather(varname, value, -id) %>%
      dplyr::mutate(varnum = as.integer(stringr::str_extract(varname, pattern = '\\d+')),
                    wave = floor((varnum-1)/10)+1) %>%
      dplyr::group_by(id, wave) %>%
      dplyr::summarise(avg = sum(value)/n()) %>%
      tidyr::spread(wave, avg, sep='_') %>%
      dplyr::ungroup() %>%
      dplyr::right_join(df %>%    # <-- join back to original data
                         dplyr::mutate(id = dplyr::row_number()),
                       by = 'id')
    

    One nice aspect to this approach is that you can inspect your data to confirm that you are correctly assigning variables to "wave"s.

    df %>%
      dplyr::mutate(id = dplyr::row_number()) %>%
      tidyr::gather(varname, value, -id) %>%
      dplyr::mutate(varnum = as.integer(stringr::str_extract(varname, pattern = '\\d+')),
                    wave = floor((varnum-1)/10)+1) %>%
      dplyr::distinct(varname, varnum, wave) %>%
      head()
    

    which produces:

      varname varnum wave
    1      X1      1    1
    2      X2      2    1
    3      X3      3    1
    4      X4      4    1
    5      X5      5    1
    6      X6      6    1
    
    0 讨论(0)
  • 2020-12-06 12:15

    Here is one way with the package zoo:

    library(zoo)
    t(rollapply(t(df), width = 10, by = 10, function(x) sum(x)/10))
    

    Here is one way to do it with base R:

    splits <- 1:100
    dim(splits) <- c(10, 10)
    splits <- split(splits, col(splits))
    results <- do.call("cbind", lapply(splits, function(x) data.frame(rowSums(df[,x] / 10))))
    names(results) <- paste0("wave_", 1:10)
    results
    

    Another very succinct way with base R (courtesy of G.Grothendieck):

    t(apply(df, 1, tapply, gl(10, 10), mean))
    

    And here is a solution with dplyr and tidyr:

    library(dplyr)
    library(tidyr)
    df$row <- 1:nrow(df)
    df2 <- df %>% gather(column, value, -row)
    df2$column <- cut(as.numeric(gsub("X", "", df2$column)),breaks = c(0:10*10))
    df2 <- df2 %>% group_by(row, column) %>% summarise(value = sum(value)/10)
    df2 %>% spread(column, value) %>% select(-row)
    
    0 讨论(0)
提交回复
热议问题