I\'m asking with regards to c#, but I assume its the same in most other languages.
Does anyone have a good definition of expressions and statements
The de-facto basis of these concepts is:
Expressions: A syntactic category whose instance can be evaluated to a value.
Statement: A syntactic category whose instance may be involved with evaluations of an expression and the resulted value of the evaluation (if any) is not guaranteed available.
Besides to the very initial context for FORTRAN in the early decades, both definitions of expressions and statements in the accepted answer are obviously wrong:
sizeof
operator is never evaluated.(BTW, I want to add [citation needed] to that answer concerning materials about C because I can't recall whether DMR has such opinions. It seems not, otherwise there should be no reasons to preserve the functionality duplication in the design of C: notably, the comma operator vs. the statements.)
(The following rationale is not the direct response to the original question, but I feel it necessary to clarify something already answered here.)
Nevertheless, it is doubtful that we need a specific category of "statements" in general-purpose programming languages:
begin
in Scheme) or syntactic sugar of monadic structures.++i + ++i
is meaningless in C.)So why statements? Anyway, the history is already a mess. It seems most language designers do not take their choice carefully.
Worse, it even gives some type system enthusiasts (who are not familiar enough with the PL history) some misconceptions that type systems must have important things to do with the more essential designs of rules on the operational semantics.
Seriously, reasoning depending on types are not that bad in many cases, but particularly not constructive in this special one. Even experts can screw things up.
For example, someone emphasizes the well-typing nature as the central argument against the traditional treatment of undelimited continuations. Although the conclusion is somewhat reasonable and the insights about composed functions are OK (but still far too naive to the essense), this argument is not sound because it totally ignores the "side channel" approach in practice like _Noreturn any_of_returnable_types
(in C11) to encode Falsum
. And strictly speaking, an abstract machine with unpredictable state is not identical to "a crashed computer".
I prefer the meaning of statement
in the formal logic sense of the word. It is one that changes the state of one or more of the variables in the computation, enabling a true or false statement to be made about their value(s).
I guess there will always be confusion in the computing world and science in general when new terminology or words are introduced, existing words are 'repurposed' or users are ignorant of the existing, established or 'proper' terminology for what they are describing
You can find this on wikipedia, but expressions are evaluated to some value, while statements have no evaluated value.
Thus, expressions can be used in statements, but not the other way around.
Note that some languages (such as Lisp, and I believe Ruby, and many others) do not differentiate statement vs expression... in such languages, everything is an expression and can be chained with other expressions.
To improve on and validate my prior answer, definitions of programming language terms should be explained from computer science type theory when applicable.
An expression has a type other than the Bottom type, i.e. it has a value. A statement has the Unit or Bottom type.
From this it follows that a statement can only have any effect in a program when it creates a side-effect, because it either can not return a value or it only returns the value of the Unit type which is either nonassignable (in some languages such a C's void
) or (such as in Scala) can be stored for a delayed evaluation of the statement.
Obviously a @pragma
or a /*comment*/
have no type and thus are differentiated from statements. Thus the only type of statement that would have no side-effects would be a non-operation. Non-operation is only useful as a placeholder for future side-effects. Any other action due to a statement would be a side-effect. Again a compiler hint, e.g. @pragma
, is not a statement because it has no type.
Statement,
A statement is a procedural building-block from which all C# programs are constructed. A statement can declare a local variable or constant, call a method, create an object, or assign a value to a variable, property, or field.
A series of statements surrounded by curly braces form a block of code. A method body is one example of a code block.
bool IsPositive(int number)
{
if (number > 0)
{
return true;
}
else
{
return false;
}
}
Statements in C# often contain expressions. An expression in C# is a fragment of code containing a literal value, a simple name, or an operator and its operands.
Expression,
An expression is a fragment of code that can be evaluated to a single value, object, method, or namespace. The two simplest types of expressions are literals and simple names. A literal is a constant value that has no name.
int i = 5;
string s = "Hello World";
Both i and s are simple names identifying local variables. When those variables are used in an expression, the value of the variable is retrieved and used for the expression.
Here is the summery of one of the simplest answer I found.
originally Answered by Anders Kaseorg
A statement is a complete line of code that performs some action, while an expression is any section of the code that evaluates to a value.
Expressions can be combined “horizontally” into larger expressions using operators, while statements can only be combined “vertically” by writing one after another, or with block constructs.
Every expression can be used as a statement (whose effect is to evaluate the expression and ignore the resulting value), but most statements cannot be used as expressions.
http://www.quora.com/Python-programming-language-1/Whats-the-difference-between-a-statement-and-an-expression-in-Python