I have asked similar question in R about creating hash value for each row of data. I know that I can use something like hashlib.md5(b\'Hello World\').hexdigest()
df.set_index(pd.util.hash_pandas_object(df), drop=False, inplace=True)
Create hash value for each row of data with selected columns in dataframe in python pandas
These solutions work for the life of the Python process.
If order matters, one method would be to coerce the row (a Series object) to a tuple:
>>> hash(tuple(df.irow(1)))
-4901655572611365671
This demonstrates order matters for tuple hashing:
>>> hash((1,2,3))
2528502973977326415
>>> hash((3,2,1))
5050909583595644743
To do so for every row, appended as a column would look like this:
>>> df = df.drop('hash', 1) # lose the old hash
>>> df['hash'] = pd.Series((hash(tuple(row)) for _, row in df.iterrows()))
>>> df
y x0 hash
0 11.624345 10 -7519341396217622291
1 10.388244 11 -6224388738743104050
2 11.471828 12 -4278475798199948732
3 11.927031 13 -1086800262788974363
4 14.865408 14 4065918964297112768
5 12.698461 15 8870116070367064431
6 17.744812 16 -2001582243795030948
7 16.238793 17 4683560048732242225
8 18.319039 18 -4288960467160144170
9 18.750630 19 7149535252257157079
[10 rows x 3 columns]
If order does not matter, use the hash of frozensets instead of tuples:
>>> hash(frozenset((3,2,1)))
-272375401224217160
>>> hash(frozenset((1,2,3)))
-272375401224217160
Avoid summing the hashes of all of the elements in the row, as this could be cryptographically insecure and lead to hashes that fall outside the range of the original.
(You could use modulo to constrain the range, but this amounts to rolling your own hash function, and the best practice is not to.)
You can make permanent cryptographic quality hashes, for example using sha256, as well using the hashlib module.
There is some discussion of the API for cryptographic hash functions in PEP 452.
Thanks to users Jamie Marshal and Discrete Lizard for their comments.
dfObj['Hash Key'] = (dfObj['DEAL_ID'].map(str) +dfObj['COST_CODE'].map(str) +dfObj['TRADE_ID'].map(str)).apply(hash)
print(dfObj['Hash Key'])
I've came up with this adaption from the code provided on the question:
new_df2 = df.copy()
key_combination = ['col1', 'col2', 'col3', 'col4']
new_df2.index = list(map(lambda x: hashlib.sha1('-'.join([col_value for col_value in x]).encode('utf-8')).hexdigest(), new_df2[key_combination].values))
This is now available in pandas.util.hash_pandas_object:
pandas.util.hash_pandas_object(df)
Or simply:
df.apply(lambda x: hash(tuple(x)), axis = 1)
As an example:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(3,5))
print df
df.apply(lambda x: hash(tuple(x)), axis = 1)
0 1 2 3 4
0 0.728046 0.542013 0.672425 0.374253 0.718211
1 0.875581 0.512513 0.826147 0.748880 0.835621
2 0.451142 0.178005 0.002384 0.060760 0.098650
0 5024405147753823273
1 -798936807792898628
2 -8745618293760919309