Here's an example that shows how table(.)
(or, more closely matching your desired output, data.frame(table(.))
does what it sounds like you are asking for.
Note also how to share reproducible sample data in a way that others can copy and paste into their session.
Here's the (reproducible) sample data:
mydf <- structure(list(ID = c(110L, 111L, 121L, 131L, 141L),
MONTH.YEAR = c("JAN. 2012", "JAN. 2012",
"FEB. 2012", "FEB. 2012",
"MAR. 2012"),
VALUE = c(1000L, 2000L, 3000L, 4000L, 5000L)),
.Names = c("ID", "MONTH.YEAR", "VALUE"),
class = "data.frame", row.names = c(NA, -5L))
mydf
# ID MONTH.YEAR VALUE
# 1 110 JAN. 2012 1000
# 2 111 JAN. 2012 2000
# 3 121 FEB. 2012 3000
# 4 131 FEB. 2012 4000
# 5 141 MAR. 2012 5000
Here's the calculation of the number of rows per group, in two output display formats:
table(mydf$MONTH.YEAR)
#
# FEB. 2012 JAN. 2012 MAR. 2012
# 2 2 1
data.frame(table(mydf$MONTH.YEAR))
# Var1 Freq
# 1 FEB. 2012 2
# 2 JAN. 2012 2
# 3 MAR. 2012 1