How to add a constant column in a Spark DataFrame?

前端 未结 2 1894
萌比男神i
萌比男神i 2020-11-22 11:26

I want to add a column in a DataFrame with some arbitrary value (that is the same for each row). I get an error when I use withColumn as follows:

相关标签:
2条回答
  • 2020-11-22 11:46

    Spark 2.2+

    Spark 2.2 introduces typedLit to support Seq, Map, and Tuples (SPARK-19254) and following calls should be supported (Scala):

    import org.apache.spark.sql.functions.typedLit
    
    df.withColumn("some_array", typedLit(Seq(1, 2, 3)))
    df.withColumn("some_struct", typedLit(("foo", 1, 0.3)))
    df.withColumn("some_map", typedLit(Map("key1" -> 1, "key2" -> 2)))
    

    Spark 1.3+ (lit), 1.4+ (array, struct), 2.0+ (map):

    The second argument for DataFrame.withColumn should be a Column so you have to use a literal:

    from pyspark.sql.functions import lit
    
    df.withColumn('new_column', lit(10))
    

    If you need complex columns you can build these using blocks like array:

    from pyspark.sql.functions import array, create_map, struct
    
    df.withColumn("some_array", array(lit(1), lit(2), lit(3)))
    df.withColumn("some_struct", struct(lit("foo"), lit(1), lit(.3)))
    df.withColumn("some_map", create_map(lit("key1"), lit(1), lit("key2"), lit(2)))
    

    Exactly the same methods can be used in Scala.

    import org.apache.spark.sql.functions.{array, lit, map, struct}
    
    df.withColumn("new_column", lit(10))
    df.withColumn("map", map(lit("key1"), lit(1), lit("key2"), lit(2)))
    

    To provide names for structs use either alias on each field:

    df.withColumn(
        "some_struct",
        struct(lit("foo").alias("x"), lit(1).alias("y"), lit(0.3).alias("z"))
     )
    

    or cast on the whole object

    df.withColumn(
        "some_struct", 
        struct(lit("foo"), lit(1), lit(0.3)).cast("struct<x: string, y: integer, z: double>")
     )
    

    It is also possible, although slower, to use an UDF.

    Note:

    The same constructs can be used to pass constant arguments to UDFs or SQL functions.

    0 讨论(0)
  • 2020-11-22 12:03

    In spark 2.2 there are two ways to add constant value in a column in DataFrame:

    1) Using lit

    2) Using typedLit.

    The difference between the two is that typedLit can also handle parameterized scala types e.g. List, Seq, and Map

    Sample DataFrame:

    val df = spark.createDataFrame(Seq((0,"a"),(1,"b"),(2,"c"))).toDF("id", "col1")
    
    +---+----+
    | id|col1|
    +---+----+
    |  0|   a|
    |  1|   b|
    +---+----+
    

    1) Using lit: Adding constant string value in new column named newcol:

    import org.apache.spark.sql.functions.lit
    val newdf = df.withColumn("newcol",lit("myval"))
    

    Result:

    +---+----+------+
    | id|col1|newcol|
    +---+----+------+
    |  0|   a| myval|
    |  1|   b| myval|
    +---+----+------+
    

    2) Using typedLit:

    import org.apache.spark.sql.functions.typedLit
    df.withColumn("newcol", typedLit(("sample", 10, .044)))
    

    Result:

    +---+----+-----------------+
    | id|col1|           newcol|
    +---+----+-----------------+
    |  0|   a|[sample,10,0.044]|
    |  1|   b|[sample,10,0.044]|
    |  2|   c|[sample,10,0.044]|
    +---+----+-----------------+
    
    0 讨论(0)
提交回复
热议问题