I am trying to write a prime number function in C# and I am wondering if the follow code will work. It \"appears\" to work with the first 50 numbers or so. I just want to ma
Prime Numbers from 0 - 1 Million in less than two tenths of a second
Just finished it. Last test was 0.017 seconds.
Regular HP Laptop. 2.1 GHz
It takes longer when it gets larger. For primes 1 - 1 billion , my last test was 28.6897 seconds. It might be faster in your program because I was casting class objects to get parameter values in mine.
Method Info
Using
using System;
using System.Diagnostics;
using System.Collections;
Method
private static int[] GetPrimeArray(int floor, int ceiling)
{
// Validate arguments.
if (floor > int.MaxValue - 1)
throw new ArgumentException("Floor is too high. Max: 2,147,483,646");
else if (ceiling > int.MaxValue - 1)
throw new ArgumentException("Ceiling is too high. Max: 2,147,483,646");
else if (floor < 0)
throw new ArgumentException("Floor must be a positive integer.");
else if (ceiling < 0)
throw new ArgumentException("Ceiling must be a positve integer.");
else if (ceiling < floor)
throw new ArgumentException("Ceiling cannot be less than floor.");
// This region is only useful when testing performance.
#region Performance
Stopwatch sw = new Stopwatch();
sw.Start();
#endregion
// Variables:
int stoppingPoint = (int)Math.Sqrt(ceiling);
double rosserBound = (1.25506 * (ceiling + 1)) / Math.Log(ceiling + 1, Math.E);
int[] primeArray = new int[(int)rosserBound];
int primeIndex = 0;
int bitIndex = 4;
int innerIndex = 3;
// Handle single digit prime ranges.
if (ceiling < 11)
{
if (floor <= 2 && ceiling >= 2) // Range includes 2.
primeArray[primeIndex++] = 2;
if (floor <= 3 && ceiling >= 3) // Range includes 3.
primeArray[primeIndex++] = 3;
if (floor <= 5 && ceiling >= 5) // Range includes 5.
primeArray[primeIndex++] = 5;
return primeArray;
}
// Begin Sieve of Eratosthenes. All values initialized as true.
BitArray primeBits = new BitArray(ceiling + 1, true);
primeBits.Set(0, false); // Zero is not prime.
primeBits.Set(1, false); // One is not prime.
checked // Check overflow.
{
try
{
// Set even numbers, excluding 2, to false.
for (bitIndex = 4; bitIndex < ceiling; bitIndex += 2)
primeBits[bitIndex] = false;
}
catch { } // Break for() if overflow occurs.
}
// Iterate by steps of two in order to skip even values.
for (bitIndex = 3; bitIndex <= stoppingPoint; bitIndex += 2)
{
if (primeBits[bitIndex] == true) // Is prime.
{
// First position to unset is always the squared value.
innerIndex = bitIndex * bitIndex;
primeBits[innerIndex] = false;
checked // Check overflow.
{
try
{
// Set multiples of i, which are odd, to false.
innerIndex += bitIndex + bitIndex;
while (innerIndex <= ceiling)
{
primeBits[innerIndex] = false;
innerIndex += bitIndex + bitIndex;
}
}
catch { continue; } // Break while() if overflow occurs.
}
}
}
// Set initial array values.
if (floor <= 2)
{
// Range includes 2 - 5.
primeArray[primeIndex++] = 2;
primeArray[primeIndex++] = 3;
primeArray[primeIndex++] = 5;
}
else if (floor <= 3)
{
// Range includes 3 - 5.
primeArray[primeIndex++] = 3;
primeArray[primeIndex++] = 5;
}
else if (floor <= 5)
{
// Range includes 5.
primeArray[primeIndex++] = 5;
}
// Increment values that skip multiples of 2, 3, and 5.
int[] increment = { 6, 4, 2, 4, 2, 4, 6, 2 };
int indexModulus = -1;
int moduloSkipAmount = (int)Math.Floor((double)(floor / 30));
// Set bit index to increment range which includes the floor.
bitIndex = moduloSkipAmount * 30 + 1;
// Increase bit and increment indicies until the floor is reached.
for (int i = 0; i < increment.Length; i++)
{
if (bitIndex >= floor)
break; // Floor reached.
// Increment, skipping multiples of 2, 3, and 5.
bitIndex += increment[++indexModulus];
}
// Initialize values of return array.
while (bitIndex <= ceiling)
{
// Add bit index to prime array, if true.
if (primeBits[bitIndex])
primeArray[primeIndex++] = bitIndex;
checked // Check overflow.
{
try
{
// Increment. Skip multiples of 2, 3, and 5.
indexModulus = ++indexModulus % 8;
bitIndex += increment[indexModulus];
}
catch { break; } // Break if overflow occurs.
}
}
// Resize array. Rosser-Schoenfeld upper bound of π(x) is not an equality.
Array.Resize(ref primeArray, primeIndex);
// This region is only useful when testing performance.
#region Performance
sw.Stop();
if (primeArray.Length == 0)
Console.WriteLine("There are no prime numbers between {0} and {1}",
floor, ceiling);
else
{
Console.WriteLine(Environment.NewLine);
for (int i = 0; i < primeArray.Length; i++)
Console.WriteLine("{0,10}:\t\t{1,15:#,###,###,###}", i + 1, primeArray[i]);
}
Console.WriteLine();
Console.WriteLine("Calculation time:\t{0}", sw.Elapsed.ToString());
#endregion
return primeArray;
}
Comments are welcome! Especially improvements.